OpenCV - 如何从低质量灰度图像中获得更好的手部轮廓?

时间:2016-11-05 09:17:28

标签: c++ opencv image-processing opencv-contour binary-image

我需要从手部图像中获取轮廓,通常我会用4个步骤处理图像:

  1. 从3个通道到1个通道获取原始RGB灰度图像:

    cvtColor(sourceGrayImage, sourceGrayImage, COLOR_BGR2GRAY);
    
  2. 使用高斯模糊过滤灰度图像:

    GaussianBlur(sourceGrayImage, sourceGrayImage, Size(3,3), 0);
    
  3. 二进制灰度图像,我按高度分割图像,通常我将图像按其高度分割为6个图像,然后每个我做阈值处理:

    // we split source picture to binaryImageSectionCount(here it's 8) pieces by its height, 
    // then we for every piece, we do threshold, 
    // and at last we combine them agin to binaryImage        
    const binaryImageSectionCount = 8;
    void GetBinaryImage(Mat &grayImage, Mat &binaryImage)
    {
        // get every partial gray image's height
        int partImageHeight = grayImage.rows / binaryImageSectionCount;
        for (int i = 0; i < binaryImageSectionCount; i++)
        {
            Mat partialGrayImage;            
            Mat partialBinaryImage;
            Rect partialRect;
            if (i != binaryImageSectionCount - 1)
            {
                // if it's not last piece, Rect's height should be partImageHeight
                partialRect = Rect(0, i * partImageHeight, grayImage.cols, partImageHeight);
            }
            else
            {
                // if it's last piece, Rect's height should be (grayImage.rows - i  * partImageHeight)
                partialRect = Rect(0, i * partImageHeight, grayImage.cols, grayImage.rows - i  * partImageHeight);
            }
    
            Mat partialResource = grayImage(partialRect);    
            partialResource.copyTo(partialGrayImage);    
            threshold( partialGrayImage, partialBinaryImage, 0, 255, THRESH_OTSU);
    
            // combin partial binary image to one piece
            partialBinaryImage.copyTo(binaryImage(partialRect));
    
            ///*stringstream resultStrm;
            //resultStrm << "partial_" << (i + 1);
            //string string = resultStrm.str();
    
            //imshow(string, partialBinaryImage);
            //waitKey(0);*/
        }
        imshow("result binary image.", binaryImage);
        waitKey(0);
        return;
    }
    
  4. 使用findcontour获得最大的区域轮廓:

    vector<vector<Point> > contours;        
    findContours(binaryImage, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
    
  5. 通常效果很好, 但对于某些低质量的灰色图像,它不起作用,如下所示:

    LowQualityGrayImage1

    LowQualityGrayImage2

    完整的代码在这里:

    #include <opencv2/imgproc/imgproc.hpp>
    #include<opencv2/opencv.hpp>
    #include <opencv2/highgui/highgui.hpp>
    
    using namespace std;
    using namespace cv;
    
    
    // we split source picture to binaryImageSectionCount(here it's 8) pieces by its height, 
    // then we for every piece, we do threshold, 
    // and at last we combine them agin to binaryImage        
    const binaryImageSectionCount = 8;
    void GetBinaryImage(Mat &grayImage, Mat &binaryImage)
    {
        // get every partial gray image's height
        int partImageHeight = grayImage.rows / binaryImageSectionCount;
        for (int i = 0; i < binaryImageSectionCount; i++)
        {
            Mat partialGrayImage;            
            Mat partialBinaryImage;
            Rect partialRect;
            if (i != binaryImageSectionCount - 1)
            {
                // if it's not last piece, Rect's height should be partImageHeight
                partialRect = Rect(0, i * partImageHeight, grayImage.cols, partImageHeight);
            }
            else
            {
                // if it's last piece, Rect's height should be (grayImage.rows - i  * partImageHeight)
                partialRect = Rect(0, i * partImageHeight, grayImage.cols, grayImage.rows - i  * partImageHeight);
            }
    
            Mat partialResource = grayImage(partialRect);    
            partialResource.copyTo(partialGrayImage);    
            threshold( partialGrayImage, partialBinaryImage, 0, 255, THRESH_OTSU);
    
            // combin partial binary image to one piece
            partialBinaryImage.copyTo(binaryImage(partialRect));
    
            ///*stringstream resultStrm;
            //resultStrm << "partial_" << (i + 1);
            //string string = resultStrm.str();
    
            //imshow(string, partialBinaryImage);
            //waitKey(0);*/
        }
        imshow("result binary image.", binaryImage);
        waitKey(0);
        return;
    }
    
    
    int main(int argc, _TCHAR* argv[])
    {   
        // get image path
        string imgPath("C:\\Users\\Alfred\\Desktop\\gray.bmp");     
    
        // read image
        Mat src = imread(imgPath);
        imshow("Source", src);        
        //medianBlur(src, src, 7);  
        cvtColor(src, src, COLOR_BGR2GRAY);     
        imshow("gray", src);    
    
        // do filter
        GaussianBlur(src, src, Size(3,3), 0);   
    
        // binary image
        Mat threshold_output(src.rows, src.cols, CV_8UC1, Scalar(0, 0, 0)); 
        GetBinaryImage(src, threshold_output);
        imshow("binaryImage", threshold_output);
    
        // get biggest contour
        vector<vector<Point> > contours;    
        findContours(threshold_output,contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
        int biggestContourIndex = 0;
        int maxContourArea = -1000;
        for (int i = 0; i < contours.size(); i++)
        {       
            if (contourArea(contours[i]) > maxContourArea)
            {
                maxContourArea = contourArea(contours[i]);
                biggestContourIndex = i;
            }
        }
    
        // show biggest contour
        Mat biggestContour(threshold_output.rows, threshold_output.cols, CV_8UC1, Scalar(0, 0, 0));
        drawContours(biggestContour, contours, biggestContourIndex, cv::Scalar(255,255,255), 2, 8, vector<Vec4i>(), 0, Point());
        imshow("maxContour", biggestContour);
        waitKey(0);
    
    }
    

    有人可以帮助我获得更好的手部轮廓效果吗? 感谢!!!

1 个答案:

答案 0 :(得分:1)

我在python中有代码片段,您可以在C中使用相同的方法:

img = cv2.imread(x, 1)
cv2.imshow("img",img)

imgray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("gray",imgray)

#Code for histogram equalization
equ = cv2.equalizeHist(imgray)
cv2.imshow('equ', equ)

#Code for contrast limited adaptive histogram equalization
#clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
#cl2 = clahe.apply(imgray)
#cv2.imshow('clahe2', cl2)

这是我获得的结果:

enter image description here

如果您的图像非常糟糕,您可以尝试我评论的代码,包括对比度限制自适应直方图均衡。