这是我用来检查convolve2d
正确性的代码import numpy as np
from scipy.signal import convolve2d
X = np.random.randint(5, size=(10,10))
K = np.random.randint(5, size=(3,3))
print "Input's top-left corner:"
print X[:3,:3]
print 'Kernel:'
print K
print 'Hardcording the calculation of a valid convolution (top-left)'
print (X[:3,:3]*K)
print 'Sums to'
print (X[:3,:3]*K).sum()
print 'However the top-left value of the convolve2d result'
Y = convolve2d(X, K, 'valid')
print Y[0,0]
在我的电脑上,会产生以下结果:
Input's top-left (3x3) corner:
[[0 0 0]
[1 1 2]
[1 3 0]]
Kernel:
[[4 1 1]
[0 3 3]
[2 1 2]]
Hardcording the calculation of a valid convolution (top-left)
[[0 0 0]
[0 3 6]
[2 3 0]]
Sums to
14
However the top-left value of the convolve2d result
10
背景故事:我一直在调试一个convnet库,不知何故渐变总是错误的。几个星期后我得出结论,一切都应该正常工作,所以我亲自检查了convolve2d函数。
答案 0 :(得分:3)
表达式(X[:3,:3]*K).sum()
不正确。对于卷积,你必须反转内核,例如(X[:3,:3]*K[::-1,::-1]).sum()
答案 1 :(得分:3)
我认为问题在于你没有做SciPy实施的工作。我不会详细介绍细节或基础,但只为您提供解决方案:
CCCryptorStatus CCCryptorGCM(
CCOperation op, // kCCEncrypt, kCCDecrypt
CCAlgorithm kCCAlgorithmAES,
const void *key, size_t keyLength,
const void *iv, size_t ivLen,
const void *aData, size_t aDataLen, // does not work
const void *dataIn, size_t dataInLength,
void *dataOut,
const void *tag, size_t *tagLength);