在dcast之后在R中转换/显示为整数的因子

时间:2016-10-23 01:27:52

标签: r dcast

在提出的问题here中,使用dcast将样本数据从宽格式转换为长格式。但是,当尝试将相同的方法应用于实际数据集(或其缩写形式)时:

dcast(melt(smallz, 1:2), behavior_num + variable ~ rater)

变量的因子(即原始列3)显示为整数。

(为什么)因子显示为整数? 它们如何仍然显示为字符?

较小的数据子集在这里:

structure(list(rater = structure(c(2L, 1L, 6L, 7L, 3L, 5L, 4L, 
2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 
6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 
3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 
4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 
1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 
7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 
5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 
2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 
6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 
3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 
4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 
1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 
7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 
5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 
2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 
6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 
3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 
4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L, 2L, 1L, 6L, 7L, 3L, 5L, 4L), .Label = c("Al", 
"Dan", "Gabi", "john", "bill", "rebecca", 
"ted"), class = "factor"), behavior_num = c(6L, 
6L, 6L, 6L, 6L, 6L, 6L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 20L, 
20L, 20L, 20L, 20L, 20L, 20L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
23L, 23L, 23L, 23L, 23L, 23L, 23L, 41L, 41L, 41L, 41L, 41L, 41L, 
41L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 49L, 49L, 49L, 49L, 49L, 
49L, 49L, 54L, 54L, 54L, 54L, 54L, 54L, 54L, 58L, 58L, 58L, 58L, 
58L, 58L, 58L, 59L, 59L, 59L, 59L, 59L, 59L, 59L, 66L, 66L, 66L, 
66L, 66L, 66L, 66L, 72L, 72L, 72L, 72L, 72L, 72L, 72L, 73L, 73L, 
73L, 73L, 73L, 73L, 73L, 82L, 82L, 82L, 82L, 82L, 82L, 82L, 84L, 
84L, 84L, 84L, 84L, 84L, 84L, 112L, 112L, 112L, 112L, 112L, 112L, 
112L, 116L, 116L, 116L, 116L, 116L, 116L, 116L, 121L, 121L, 121L, 
121L, 121L, 121L, 121L, 122L, 122L, 122L, 122L, 122L, 122L, 122L, 
127L, 127L, 127L, 127L, 127L, 127L, 127L, 132L, 132L, 132L, 132L, 
132L, 132L, 132L, 133L, 133L, 133L, 133L, 133L, 133L, 133L, 135L, 
135L, 135L, 135L, 135L, 135L, 135L, 142L, 142L, 142L, 142L, 142L, 
142L, 142L, 145L, 145L, 145L, 145L, 145L, 145L, 145L, 147L, 147L, 
147L, 147L, 147L, 147L, 147L, 155L, 155L, 155L, 155L, 155L, 155L, 
155L, 162L, 162L, 162L, 162L, 162L, 162L, 162L, 173L, 173L, 173L, 
173L, 173L, 173L, 173L, 178L, 178L, 178L, 178L, 178L, 178L, 178L, 
179L, 179L, 179L, 179L, 179L, 179L, 179L, 182L, 182L, 182L, 182L, 
182L, 182L, 182L, 183L, 183L, 183L, 183L, 183L, 183L, 183L, 186L, 
186L, 186L, 186L, 186L, 186L, 186L, 193L, 193L, 193L, 193L, 193L, 
193L, 193L, 196L, 196L, 196L, 196L, 196L, 196L, 196L, 204L, 204L, 
204L, 204L, 204L, 204L, 204L, 206L, 206L, 206L, 206L, 206L, 206L, 
206L, 207L, 207L, 207L, 207L, 207L, 207L, 207L, 211L, 211L, 211L, 
211L, 211L, 211L, 211L, 211L, 231L, 231L, 231L, 231L, 231L, 231L
), self.and.tech = structure(c(2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 3L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 
2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 
2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 1L, 3L, 3L, 2L, 3L, 2L, 
3L, 1L, 1L, 3L, 1L, 3L, 1L, 3L, 1L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 3L, 1L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 3L, 
3L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 
1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 
2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 
2L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 1L, 1L, 
1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 2L, 1L, 2L, 2L, 1L, 
3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 
2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L), .Label = c("more commonly reinforced", 
"neither a history of reinforcement or punishment are discernible from the behaviors evidenced", 
"more commonly punished"), class = "factor")), .Names = c("rater", 
"behavior_num", "self.and.tech"), row.names = c(NA, -294L), class = "data.frame"

0 个答案:

没有答案