使用数据框,我有一列,名为public override int SaveChanges(SaveOptions options)
{
foreach (ObjectStateEntry entry in
ObjectStateManager.GetObjectStateEntries(
EntityState.Added | EntityState.Modified))
{
// Validate the objects in the Added and Modified state
// if the validation fails, e.g. throw an exeption.
}
return base.SaveChanges(options);
}
TM52_fail
我想创建一个名为2
1
-
1 & 2
1 & 2 & 3
-
-
3
etc.
的附加列,其内容取决于列TM52_fail_norm
的内容。
我的尝试(包括条件填充):
TM52_fail
返回一个空列(我假设为def str_to_number(x):
if x=="1" or x=="2" or x=="3":
return 1
elif x=="1 & 2" or x=="2 & 3" or x=="1 & 3":
return 2
elif x=="1 & 2 & 3":
return 3
else:
return 0
df['TM52_fail_norm'] = ""
df['TM52_fail_norm'].apply(lambda x: str_to_number(x for x in df['TM52_fail']))
)。
答案 0 :(得分:2)
我认为您需要按astype
转换为字符串,然后应用函数str_to_number
:
df['new'] = df['TM52_fail_norm'].astype(str).apply(str_to_number)
print (df)
TM52_fail_norm new
0 2 1
1 1 1
2 - 0
3 1 & 2 2
4 1 & 2 & 3 3
5 - 0
6 - 0
7 3 1
dict
0
的另一个解决方案,int
最后需要map
并投放到d = {'1':1,'2':1,'3':1,'1 & 2':2, '2 & 3':2, '1 & 3':2,'1 & 2 & 3':3}
df['new'] = df['TM52_fail_norm'].map(d)
df['new'] = df['new'].fillna(0).astype(int)
print (df)
TM52_fail_norm new
0 2 1
1 1 1
2 - 0
3 1 & 2 2
4 1 & 2 & 3 3
5 - 0
6 - 0
7 3 1
:
#[800000 rows x 1 columns]
df = pd.concat([df]*100000).reset_index(drop=True)
In [315]: %timeit (jez1(df))
10 loops, best of 3: 63 ms per loop
In [316]: %timeit (df['TM52_fail_norm'].astype(str).apply(str_to_number))
1 loop, best of 3: 518 ms per loop
#http://stackoverflow.com/a/40176883/2901002
In [345]: %timeit (df.TM52_fail_norm.str.count('\d+'))
1 loop, best of 3: 707 ms per loop
def jez1(df):
d = {'1':1,'2':1,'3':1,'1 & 2':2, '2 & 3':2, '1 & 3':2,'1 & 2 & 3':3}
df['new'] = df['TM52_fail_norm'].map(d)
df['new'] = df['new'].fillna(0).astype(int)
return (df)
print (jez1(df))
<强>计时强>:
final Handler handler = new Handler();
Runnable runnable = new Runnable() {
@Override
public void run() {
try{
//do your code here
}
catch (Exception e) {
// TODO: handle exception
}
finally{
//also call the same runnable to call it at regular interval
handler.postDelayed(this, "*interval");
}
}
};
handler.postDelayed(runnable, "*interval");
答案 1 :(得分:1)
TL; DR:df.TM52_fail.str.count('\d+')
看起来你真正想要的是计算位数。在这里,熊猫&#39; .str
访问者方法(docs,summary of .str
methods)非常有用!
我认为TM52_fail
是dtype str
;否则你可以使用.astype(str)
投射,如@jezrael所建议的那样:
# setup
import pandas as pd
df = pd.DataFrame({'TM52_fail':[
"2", "1", "", "1 & 2", "1 & 2 & 3", "", "", "3"]})
# Use regex \d+ to find 1 or more consecutive digits
df['TM52_fail_norm2'] = df.TM52_fail.str.count('\d+')
Regex: 155 µs per loop
jez1: 999 µs per loop