概述:我正在努力通过np.where了解这个嵌套蒙版出错的地方。我希望的是 - 如果雪是真的,分配1,如果是假,则评估第二个np.where,如果no_snow为真则测试,分配0,如果为false(意味着雪是假,no_snow,如果为假)则分配2
# open IMS & pull necessary keys.
hf = h5py.File(ims_dir + 'ims_daily_snow_cover.h5', 'r')
ims = hf['snow_cover'][...]
# create an empty parameter to be later written to new hdf file as gap_fill_flag.
dataset_fill = np.zeros(ims.shape)
# loop through fill - branch based on temporal fill or merra fill.
for day in range(len(fill)):
# print len(day)
print day
fill[day] == 2
year = days[day][:4]
# merra fill - more than one consecutive day missing.
if (fill[day-1] == 2) | (fill[day+1] == 2):
# run merra_fill function
# fill with a 2 to signify data are filled from merra.
ims[day, :] = merra_fill(days[day], ims[day, :])
dataset_fill[day, :] = 2
else:
# temporal_fill - less than one consecutive day missing.
snow = ((ims[day - 1:day+2, :] == 1).sum(axis=0)) == 2
no_snow = ((ims[day - 1:day+2, :] == 0).sum(axis=0)) == 2
# nested np.where.
ims[day, :] = np.where(snow == True, 1, np.where(no_snow == True, 0, 2))
dataset_fill[day, :][ims[day, :] < 2] = 1
dataset_fill[day, :][ims[day, :] == 2] = 2
ims[day, :][ims[day, :] == 2] = merra_fill(days[day], ims[day, :])
错误:
ims[day, :] = np.where(snow == True, 1, np.where(no_snow == True, 0, 2))
ValueError: NumPy boolean array indexing assignment cannot assign 2005409 input values to the 0 output values where the mask is true
帮帮我,stackoverflow。你是我唯一的希望。
答案 0 :(得分:2)
来自帮助(np.where):
np.where(no_snow...)
我怀疑snow == True
的形状与{{1}}相同。