创建了这样的网格网络:
#Weights
from math import sqrt
weights = dict()
for source, target in G.edges():
x1, y1 = pos2[source]
x2, y2 = pos2[target]
weights[(source, target)] = round((math.sqrt((x2-x1)**2 + (y2-y1)**2)),3)
for e in G.edges():
G[e[0]][e[1]] = weights[e] #Assigning weights to G.edges()
为每条边分配了一个与其长度相对应的重量(在这个简单的情况下,所有长度= 1):
G.edges()
这就是我[(0, 1, 1.0),
(0, 10, 1.0),
(1, 11, 1.0),
(1, 2, 1.0),... ] #Trivial case: all weights are unitary
的样子:( startnode ID,endnode ID,weight)
nx.incidence_matrix(G, nodelist=None, edgelist=None, oriented=False, weight=None)
如何创建考虑刚刚定义的权重的关联矩阵?我想使用weight
,但在这种情况下weight
的正确值是什么?
docs表示insert
是一个字符串,代表"边缘数据键,用于提供矩阵中的每个值",但具体是什么意思?我也没有找到相关的例子。
有什么想法吗?
答案 0 :(得分:1)
这是一个简单的例子,展示了如何正确设置边缘属性以及如何生成加权关联矩阵。
import networkx as nx
from math import sqrt
G = nx.grid_2d_graph(3,3)
for s, t in G.edges():
x1, y1 = s
x2, y2 = t
G[s][t]['weight']=sqrt((x2-x1)**2 + (y2-y1)**2)*42
print(nx.incidence_matrix(G,weight='weight').todense())
输出
[[ 42. 42. 42. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 42. 42. 42. 0. 0. 0. 0. 0. 0.]
[ 42. 0. 0. 0. 0. 0. 42. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 42. 42. 42. 0. 0.]
[ 0. 42. 0. 42. 0. 0. 0. 0. 42. 0. 42. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 42. 0. 0. 0. 42.]
[ 0. 0. 0. 0. 0. 42. 0. 0. 0. 42. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 42. 0. 0. 0. 42. 42.]
[ 0. 0. 42. 0. 42. 0. 0. 0. 0. 0. 0. 0.]]
如果您想要矩阵中节点和边的特定排序,请使用nodelist =和edgelist =可选参数到networkx.indicence_matrix()。