使用Python脚本w二阶Runge Kutta方法来解决摆的方程,如何添加KE,PE和TE的计算?

时间:2016-10-19 02:42:09

标签: python physics runge-kutta

我无法弄清楚如何编写脚本来绘制KE,PE和TE。我在我的代码部分中包含了多个###########,我觉得问题所在。

def pendulum_runge_kutta(theta0,omega0,g,tfinal,dt):
    # initialize arrays
    t = np.arange(0.,tfinal+dt,dt)              # time array t
    npoints = len(t)
    theta = np.zeros(npoints)                   # position array theta
    omega = np.zeros(npoints)                   # position array omega
    Ke = np.zeros(npoints)
    Pe = np.zeros(npoints)
    L=4
    g = 9.81
    t2=np.linspace(0,tfinal,1000)
    theta0=0.01
    omega0=0

    # exact solution for 
    thetaExact = theta0*np.cos((g/L)**(1/2)*t2)

    # SECOND ORDER RUNGE_KUTTA SOLUTION
    theta[0] = theta0
    omega[0] = omega0
    #Ke[0] = #######################################
    #Pe[0] =###################################### 
    m=1.0
    for i in range(npoints-1):
        # compute midpoint position (not used!) and  velocity         
        thetamid = theta[i] + omega[i]*dt
        omegamid = omega[i] - (g/L)*np.sin(theta[i])*dt/2

        # use midpoint velocity to advance position            
        theta[i+1] = theta[i] + omegamid*dt
        omega[i+1] = omega[i] -(g/L)*np.sin(thetamid)*dt/2

        ###########calculate Ke, Pe, Te############
        Ke[i+1] =  0.5*m*(omega[i+1]*L)**2
        Pe[i+1] = m*g*L*np.sin(theta[i+1])
    Te = Ke+Pe

    #plot result of Ke, Pe, Te
    pl.figure(1)
    pl.plot(t,Ke,'c-',label='kinetic energy')
    pl.plot(t,Pe,'m-',label='potential energy')
    pl.plot(t,Te,'g-',label='total energy')
    pl.title('Ke, Pe, and Te')
    pl.legend(loc='lower right')
    pl.show()

    #now plot the results
    pl.figure(2)
    pl.plot(t,theta,'ro',label='2oRK')
    pl.plot(t2,thetaExact,'r',label='Exact')
    pl.grid('on')
    pl.legend()
    pl.xlabel('Time (s)')
    pl.ylabel('Theta')
    pl.title('Theta vs Time')
    pl.show()

#call function    
pendulum_runge_kutta(0.01, 0, 9.8, 12, .1)

1 个答案:

答案 0 :(得分:0)

中点方法的公式统一适用于一阶系统的所有组件。因此,对于两个中点值,它应为dt/2,对于全时步长,应为dt

潜在能量应包含sin(x)C-cos(x)的积分。例如,

Pe[i+1] = m*g*L*(1-np.cos(theta[i+1]))

时间点i+1的能量公式也适用于时间点0。您必须向上移动质量声明,例如在长度L=4行之后。

最后一点,指出的精确解是用于小角度近似,对于一般物理摆没有有限可表达的精确解。对于theta0=0.01的给定幅度,小角度近似应该足够好,但要注意更大的摆动。