我正在尝试通过runge-kutta四阶方法数字地求解两个ode的系统。 初始系统: 系统解决:
我在runge-kutta中找不到麻烦。请帮帮我。
我的代码在这里:
dt = 0.04
#initial conditions
t.append(0)
zdot.append(0)
z.append(A)
thetadot.append(0)
theta.append(B)
#derrive functions
def zdotdot(z_cur, theta_cur):
return -omega_z * z_cur - epsilon / 2 / m * theta_cur
def thetadotdot(z_cur, theta_cur):
return -omega_theta * theta_cur - epsilon / 2 / I * z_cur
i = 0
while True:
# runge_kutta
k1_zdot = zdotdot(z[i], theta[i])
k1_thetadot = thetadotdot(z[i], theta[i])
k2_zdot = zdotdot(z[i] + dt/2 * k1_zdot, theta[i])
k2_thetadot = thetadotdot(z[i], theta[i] + dt/2 * k1_thetadot)
k3_zdot = zdotdot(z[i] + dt/2 * k2_zdot, theta[i])
k3_thetadot = thetadotdot(z[i], theta[i] + dt/2 * k2_thetadot)
k4_zdot = zdotdot(z[i] + dt * k3_zdot, theta[i])
k4_thetadot = thetadotdot(z[i], theta[i] + dt * k3_thetadot)
zdot.append (zdot[i] + (k1_zdot + 2*k2_zdot + 2*k3_zdot + k4_zdot) * dt / 6)
thetadot.append (thetadot[i] + (k1_thetadot + 2*k2_thetadot + 2*k3_thetadot + k4_thetadot) * dt / 6)
z.append (z[i] + zdot[i + 1] * dt)
theta.append (theta[i] + thetadot[i + 1] * dt)
i += 1
答案 0 :(得分:0)
您的状态有4个分量,因此每个阶段需要4个斜率。显然,z
的斜率/更新不能来自k1_zdot
,它必须是k1_z
,之前的计算方式为
k1_z = zdot
并在下一阶段
k2_z = zdot + dt/2*k1_zdot
等
但是更好的方法是使用矢量化界面
def derivs(t,u):
z, theta, dz, dtheta = u
ddz = -omega_z * z - epsilon / 2 / m * theta
ddtheta = -omega_theta * theta - epsilon / 2 / I * z
return np.array([dz, dtheta, ddz, ddtheta]);
,然后使用RK4的标准公式
i = 0
while True:
# runge_kutta
k1 = derivs(t[i], u[i])
k2 = derivs(t[i] + dt/2, u[i] + dt/2 * k1)
k3 = derivs(t[i] + dt/2, u[i] + dt/2 * k2)
k4 = derivs(t[i] + dt, u[i] + dt * k3)
u.append (u[i] + (k1 + 2*k2 + 2*k3 + k4) * dt / 6)
i += 1
,然后解压缩为
z, theta, dz, dtheta = np.asarray(u).T