Keras imageGenerator例外:生成器的输出应该是元组(x,y,sample_weight)或(x,y)。发现:没有

时间:2016-10-17 18:05:40

标签: machine-learning computer-vision theano keras

我目前正在尝试使用我自己生成的数据集来关注示例here。后端使用Theano运行。目录结构完全相同:

image_sets/
    dogs/
        dog001.jpg
        dog002.jpg
        ...
    cats/
        cat001.jpg
        cat002.jpg
        ...
validation/
    dogs/
        dog001.jpg
        dog002.jpg
        ...
    cats/
        cat001.jpg

这是我的keras卷积神经网络的代码。

  img_width, img_height = 150, 150

img_width, img_height = 150, 150
train_data_dir = './image_sets'
validation_data_dir = './validation'
nb_train_samples = 267
print nb_train_samples
#number of validation images I have
nb_validation_samples =  2002
print nb_validation_samples
nb_epoch = 50
# from keras import backend as K
# K.set_image_dim_ordering('th')

model = Sequential()
model.add(Convolution2D(32, 3, 3, input_shape=(3,img_width, img_height)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

train_datagen = ImageDataGenerator(
        rescale=1./255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
        train_data_dir,
        target_size=(img_width, img_height),
        batch_size=32,
        class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
        validation_data_dir,
        target_size=(img_width, img_height),
        batch_size=32,
        class_mode='binary')

model.fit_generator(
        train_generator,
        samples_per_epoch=nb_train_samples,
        nb_epoch=nb_epoch,
        validation_data=validation_generator,
        nb_val_samples=nb_validation_samples)
model.save_weights('first_try.h5')

2 个答案:

答案 0 :(得分:1)

我在运行代码时遇到了同样的问题,但我使用的是tensorflow作为后端。我的问题是我在较旧版本的keras上运行它。

通过

升级到keras 2.0

pip install --upgrade keras

然后按以下步骤更新您的fit_generator功能 -

model.fit_generator(generator=train_generator,
                    steps_per_epoch=2048 // 16,
                    epochs=20,
                    validation_data=validation_generator,
                    validation_steps=832//16)

这里,16是你的batch_size。

您可以通过fchollet找到完整的更新代码:Here

答案 1 :(得分:0)

你的生成器应该是一个python生成器。 您可以阅读更多here

简要解释一下,生成器允许你从被调用的函数中产生一系列值,而不需要清理它的变量(例如,return语句是这种情况)