我正在尝试从此处工作将基于keras的序列转换为序列示例: https://github.com/ml4a/ml4a-guides/blob/master/notebooks/sequence_to_sequence.ipynb
这是我使用keras 1.2.2 / python 3.5.2运行的代码:
import numpy as np
from keras.models import Model
from keras.layers.recurrent import LSTM
from keras.layers.embeddings import Embedding
from keras.layers.wrappers import TimeDistributed
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from keras.layers import Activation, Dense, RepeatVector, Input, merge
import json
data = json.load(open('../data/en_de_corpus.json', 'r'))
# to deal with memory issues,
# limit the dataset
# we could also generate the training samples on-demand
# with a generator and use keras models' `fit_generator` method
max_len = 6
max_examples = 80000
max_vocab_size = 10000
def get_texts(source_texts, target_texts, max_len, max_examples):
"""extract texts
training gets difficult with widely varying lengths
since some sequences are mostly padding
long sequences get difficult too, so we are going
to cheat and just consider short-ish sequences.
this assumes whitespace as a token delimiter
and that the texts are already aligned.
"""
sources, targets = [], []
for i, source in enumerate(source_texts):
# assume we split on whitespace
if len(source.split(' ')) <= max_len:
target = target_texts[i]
if len(target.split(' ')) <= max_len:
sources.append(source)
targets.append(target)
return sources[:max_examples], targets[:max_examples]
en_texts, de_texts = get_texts(data['en'], data['de'], max_len, max_examples)
n_examples = len(en_texts)
# add start and stop tokens
start_token = '^'
end_token = '$'
en_texts = [' '.join([start_token, text, end_token]) for text in en_texts]
de_texts = [' '.join([start_token, text, end_token]) for text in de_texts]
# characters for the tokenizers to filter out
# preserve start and stop tokens
filter_chars = '!"#$%&()*+,-./:;<=>?@[\\]^_{|}~\t\n\'`“”–'.replace(start_token, '').replace(end_token, '')
source_tokenizer = Tokenizer(max_vocab_size, filters=filter_chars)
source_tokenizer.fit_on_texts(en_texts)
target_tokenizer = Tokenizer(max_vocab_size, filters=filter_chars)
target_tokenizer.fit_on_texts(de_texts)
# vocab sizes
# idx 0 is reserved by keras (for padding)
# and not part of the word_index,
# so add 1 to account for it
source_vocab_size = len(source_tokenizer.word_index) + 1
target_vocab_size = len(target_tokenizer.word_index) + 1
# find max length (in tokens) of input and output sentences
max_input_length = max(len(seq) for seq in source_tokenizer.texts_to_sequences_generator(en_texts))
max_output_length = max(len(seq) for seq in target_tokenizer.texts_to_sequences_generator(de_texts))
sequences = pad_sequences(source_tokenizer.texts_to_sequences(en_texts[:1]), maxlen=max_input_length)
print(en_texts[0])
# >>> ^ I took the bus back. $
print(sequences[0])
# >>> [ 0 0 0 2 4 223 3 461 114 1]
def build_one_hot_vecs(sequences):
"""generate one-hot vectors from token sequences"""
# boolean to reduce memory footprint
X = np.zeros((len(sequences), max_input_length, source_vocab_size), dtype=np.bool)
for i, sent in enumerate(sequences):
word_idxs = np.arange(max_input_length)
X[i][[word_idxs, sent]] = True
return X
def build_target_vecs():
"""encode words in the target sequences as one-hots"""
y = np.zeros((n_examples, max_output_length, target_vocab_size), dtype=np.bool)
for i, sent in enumerate(pad_sequences(target_tokenizer.texts_to_sequences(de_texts), maxlen=max_output_length)):
word_idxs = np.arange(max_output_length)
y[i][[word_idxs, sent]] = True
return y
hidden_dim = 128
embedding_dim = 128
def build_model(one_hot=False, bidirectional=False):
"""build a vanilla sequence-to-sequence model.
specify `one_hot=True` to build it for one-hot encoded inputs,
otherwise, pass in sequences directly and embeddings will be learned.
specify `bidirectional=False` to use a bidirectional LSTM"""
if one_hot:
input = Input(shape=(max_input_length,source_vocab_size))
input_ = input
else:
input = Input(shape=(max_input_length,), dtype='int32')
input_ = Embedding(source_vocab_size, embedding_dim, input_length=max_input_length)(input)
# encoder; don't return sequences, just give us one representation vector
if bidirectional:
forwards = LSTM(hidden_dim, return_sequences=False)(input_)
backwards = LSTM(hidden_dim, return_sequences=False, go_backwards=True)(input_)
encoder = merge([forwards, backwards], mode='concat', concat_axis=-1)
else:
encoder = LSTM(hidden_dim, return_sequences=False)(input_)
# repeat encoder output for each desired output from the decoder
encoder = RepeatVector(max_output_length)(encoder)
# decoder; do return sequences (timesteps)
decoder = LSTM(hidden_dim, return_sequences=True)(encoder)
# apply the dense layer to each timestep
# give output conforming to target vocab size
decoder = TimeDistributed(Dense(target_vocab_size))(decoder)
# convert to a proper distribution
predictions = Activation('softmax')(decoder)
return Model(input=input, output=predictions)
target_reverse_word_index = {v:k for k,v in target_tokenizer.word_index.items()}
def decode_outputs(predictions):
outputs = []
for probs in predictions:
preds = probs.argmax(axis=-1)
tokens = []
for idx in preds:
tokens.append(target_reverse_word_index.get(idx))
outputs.append(' '.join([t for t in tokens if t is not None]))
return outputs
def build_seq_vecs (sequences):
return np.array(sequences)
import math
def generate_batches(batch_size, one_hot=False):
# each epoch
n_batches = math.ceil(n_examples/batch_size)
while True:
sequences = pad_sequences(source_tokenizer.texts_to_sequences(en_texts), maxlen=max_input_length)
if one_hot:
X = build_one_hot_vecs(sequences)
else:
X = build_seq_vecs(sequences)
y = build_target_vecs()
# shuffle
idx = np.random.permutation(len(sequences))
X = X[idx]
y = y[idx]
for i in range(n_batches):
start = batch_size * i
end = start+batch_size
yield X[start:end], y[start:end]
n_epochs = 100
batch_size = 128
model = build_model(one_hot=False, bidirectional=False)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit_generator(generator=generate_batches(batch_size, one_hot=False), samples_per_epoch=n_examples, nb_epoch=n_epochs, verbose=1)
def translate(model, sentences, one_hot=False):
seqs = pad_sequences(source_tokenizer.texts_to_sequences(sentences), maxlen=max_input_length)
if one_hot:
input = build_one_hot_vecs(seqs)
else:
input = build_seq_vecs(seqs)
preds = model.predict(input, verbose=0)
return decode_outputs(preds)
print(en_texts[0])
print(de_texts[0])
print(translate(model, [en_texts[0]], one_hot=True))
# >>> ^ I took the bus back. $
# >>> ^ Ich nahm den Bus zurück. $
# >>> ^ ich ich die die verloren $
似乎启动正常,但是当它尝试移至第二个时期时,出现此错误:
Epoch 2/100
Exception in thread Thread-1:
Traceback (most recent call last):
File "C:\Users\Tobias\AppData\Local\Programs\Python\Python35\lib\threading.py", line 914, in _bootstrap_inner
self.run()
File "C:\Users\Tobias\AppData\Local\Programs\Python\Python35\lib\threading.py", line 862, in run
self._target(*self._args, **self._kwargs)
File "C:\Users\Tobias\AppData\Local\Programs\Python\Python35\lib\site-packages\keras-1.2.2-py3.5.egg\keras\engine\training.py", line 429, in data_generator_task
generator_output = next(self._generator)
File "C:\Users\Tobias\Desktop\Augury\seq2seq2.py", line 168, in generate_batches
y = y[idx]
MemoryError
Traceback (most recent call last):
File "C:\Users\Tobias\AppData\Local\Programs\Python\Python35\lib\runpy.py", line 174, in _run_module_as_main
mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
File "C:\Users\Tobias\AppData\Local\Programs\Python\Python35\lib\runpy.py", line 109, in _get_module_details
__import__(pkg_name)
File "C:\Users\Tobias\Desktop\Augury\seq2seq2.py", line 179, in <module>
model.fit_generator(generator=generate_batches(batch_size, one_hot=False), samples_per_epoch=n_examples, nb_epoch=n_epochs, verbose=1)
File "C:\Users\Tobias\AppData\Local\Programs\Python\Python35\lib\site-packages\keras-1.2.2-py3.5.egg\keras\engine\training.py", line 1532, in fit_generator
str(generator_output))
ValueError: output of generator should be a tuple (x, y, sample_weight) or (x, y). Found: None
有人对这里可能出什么问题有任何想法吗?
答案 0 :(得分:1)
您可以使用以下方法测试生成器:
next(generate_batches(batch_size, one_hot=False))
如果在这种情况下有效,则应查看内存消耗。因为您的seq2seq2.py引发了MemoryError,这也可能是问题的根源。可能是您的生成器返回了None,因为如果是这样。
在Keras中,顺便说一句,您可以使用LSTM Layerwrappers(双向),该操作可以手动完成。