#include "ieee754.h"
#include <stdio.h>
#include <math.h>
//This program convert a floating number to its binary representation (IEEE754) in computer memory
int main() {
long double f, binaryTotal, binaryFrac = 0.0, frac, fracFractor = 0.1;
long int integer, binaryInt = 0;
long int p = 0, rem, temp;
printf("\nEnter floating number: ");
scanf("%Lf", &f);
//separate the integer part from the input floating number
integer = (int)f;
//separate the fractional part from the input floating number
frac = f - integer;
//loop to convert integer part to binary
while (integer != 0) {
rem = integer % 2;
binaryInt = binaryInt + rem *pow(10, p);
integer = integer / 2;
p++;
}
//loop to convert fractional part to binary
while (frac != 0) {
frac = frac * 2;
temp = frac;
binaryFrac = binaryFrac + fracFractor * temp;
if (temp == 1)
frac = frac - temp;
fracFractor = fracFractor / 10;
}
binaryTotal = binaryInt + binaryFrac;
printf("binary equivalent = %Lf\n", binaryTotal);
}
我正在尝试将浮点数转换为二进制表示(64位)。这段代码有效,但并不完美。例如,当我转换.575
时,它会向我0.100100
但是当我使用此网站http://www.exploringbinary.com/floating-point-converter/进行转换时,正确的输出应为0.1001001100110011001100110011001100110011001100110011
我无法理解是什么让我的代码截断了数字。任何人都可以帮我解决这个问题吗?我感谢您的帮助。
答案 0 :(得分:1)
许多问题:
使用(int)
提取long double
的整数部分会严重限制范围。使用modfl(long double value, long double *iptr);
long double f;
long int integer;
//separate the integer part from the input floating number
// Weak code
integer = (int)f;
long double ipart;
long double fpart = modfl(f, &ipart);
long p; pow(10,p);
- &gt; pow()
一旦p
超过某个值,pow()
返回值的精度就会降低(例25)。将long double
与使用powl()
的函数一起使用也很奇怪。我期待fracFractor/10
。
各种其他不精确的FP问题:long
,10
精度有限。
代码很奇怪,因为它试图将FP编号(可能是某种二进制格式)转换为二进制表示。它不应该在代码中的任何位置#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<float.h>
static void print_ipart(long double x) {
int digit = (int) (modfl(x/2, &x)*2.0) + '0';
if (x) {
print_ipart(x);
}
putchar(digit);
}
void print_bin(long double x) {
// Some TBD code
// Handle NAN with isnan()
// Handle infinity with isfinite()
putchar(signbit(x) ? '-' : '+');
long double ipart;
long double fpart = modfl(fabsl(x), &ipart);
print_ipart(ipart);
putchar('.');
while (fpart) {
long double ipart;
fpart = modfl(fpart * 2, &ipart);
putchar((int)ipart + '0');
}
putchar('\n');
}
int main() {
print_bin(-4.25);
print_bin(.575);
print_bin(DBL_MAX);
print_bin(DBL_MIN);
print_bin(DBL_TRUE_MIN);
}
。
建议像
这样简单的东西-100.01
+0.1001001100110011001100110011001100110011001100110011001100110011
+1111111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.
+0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
+0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
输出
await
答案 1 :(得分:0)
这就是为什么这不太可行:
fracFractor = 0.1
...
fracFractor = fracFractor/10
0.1无法以任何二进制浮点格式准确表示。你不能将0.1表示为2的负幂的倍数。将它除以10将使每一步都收集舍入误差。可能是你实际退出了这个循环,因为你最终将重复分数与另一个重复分数进行比较。
这将严重限制你可以实现的目标:
binaryTotal = binaryInt + binaryFrac;
以浮点形式执行此操作将具有严重的限制 - 至少表示0.1不能表示如上所述。这就是为什么你得到的答案显示为二进制和十进制数字的混合。
要解决此问题,您应该查看数字的各个位。为了保持解决方案的整体概念不变,最简单的方法是从你的分数中减去2的负功率(0.5,0.25等),测试它是否仍为正,并根据它构建一个字符串。然后对整数部分使用类似的逻辑。