此代码假设减少初始巡视的距离:distan(initial_tour)< distan(最好的)。你能帮帮我吗?我现在一整天都在努力。 我是否需要更改交换方法? 出了点问题,模拟退火不起作用:
def prob(currentDistance,neighbourDistance,temp):
if neighbourDistance < currentDistance:
return 1.0
else:
return math.exp( (currentDistance - neighbourDistance) / temp)
def distan(solution):
#gives the distance of solution
listax, listay = [], []
for i in range(len(solution)):
listax.append(solution[i].x)
listay.append(solution[i].y)
dists = np.linalg.norm(np.vstack([np.diff(np.array(listax)), np.diff(np.array(listay))]), axis=0)
cumsum_dist = np.cumsum(dists)
return cumsum_dist[-1]
#simulated annealing
temp = 1000000
#creating initial tour
shuffle(greedys)
initial_tour=greedys
print (distan(initial_tour))
current_best = initial_tour
best = current_best
while(temp >1 ):
#create new neighbour tour
new_solution= current_best
#Get a random positions in the neighbour tour
tourPos1=random.randrange(0, len(dfar))
tourPos2=random.randrange(0, len(dfar))
tourCity1=new_solution[tourPos1]
tourCity2=new_solution[tourPos2]
#swapping
new_solution[tourPos1]=tourCity2
new_solution[tourPos2]=tourCity1
#get distance of both current_best and its neighbour
currentDistance = distan(current_best)
neighbourDistance = distan(new_solution)
# decide if we should accept the neighbour
# random.random() returns a number in [0,1)
if prob(currentDistance,neighbourDistance,temp) > random.random():
current_best = new_solution
# keep track of the best solution found
if distan(current_best) < distan(best):
best = current_best
#Cool system
temp = temp*0.99995
print(distan(best))
答案 0 :(得分:0)
您的问题出现在while
循环的第一行,您可以在其中编写
new_solution= current_best
这样做会将current_best
列表引用到new_solution
。这意味着当您更改new_solution
时,您实际上也在改变current_best
,这不是您的意图。
问题可以通过将有问题的行替换为将列表复制到新列表中来解决,如下所示:
new_solution = list(current_best)