我有以下数据:
ID <- c(1, 2, 1, 2, 1, 2)
year <- c(1, 1, 2, 2, 3, 3)
population.served <- c(100, 200, 300, 400, 400, 500)
population <- c(1000, 1200, 1000, 1200, 1000, 1200)
all <- data.frame(ID, year, population.served, population)
我想计算按年份为每个ID服务的人口百分比。我试过这个,但我只计算每年服务的百分比。我需要一些方法来迭代每个ID和年份,以捕获累积和作为分子。
我希望数据看起来像这样:
ID <- c(1, 2, 1, 2, 1, 2)
year <- c(1, 1, 2, 2, 3, 3)
population.served <- c(100, 200, 300, 400, 400, 500)
population <- c(1000, 1200, 1000, 1200, 1000, 1200)
cumulative.served <- c(10, 16.7, 40, 50, 80, 91.7)
all <- data.frame(ID, year, population.served, population, cumulative.served)
答案 0 :(得分:5)
使用dplyr
包可以轻松完成此操作:
all %>%
arrange(year) %>%
group_by(ID) %>%
mutate(cumulative.served = round(cumsum(population.served)/population*100,1))
然后输出:
ID year population.served population cumulative.served
<dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 100 1000 10.0
2 2 1 200 1200 16.7
3 1 2 300 1000 40.0
4 2 2 400 1200 50.0
5 1 3 400 1000 80.0
6 2 3 500 1200 91.7
或者使用快速data.table
包的方式类似:
library(data.table)
setDT(all)[order(year), cumulative.served := round(cumsum(population.served)/population*100,1), by = ID]
经过一些反复试验,我还想出了一个基本的R方法:
all <- all[order(all$ID, all$year),]
all$cumulative.served <- round(100*with(all, ave(population.served, ID, FUN = cumsum))/all$population, 1)