我正在研究将分治算法转换为动态编程算法的程序。该算法用于测序(如DNA)并找到这样做的成本。只是重申动态编程算法是有效的,分而治之的不是,我无法弄清楚为什么。
#include<iostream>
#include <vector>
using namespace std;
int penalty;
int m, n;
char x[] = { 'A', 'A', 'C' }; //, 'A', 'G', 'T', 'T', 'A', 'C', 'C' };
char y[] = { 'T', 'A' }; //,'A' //, 'G', 'G', 'T', 'C', 'A' };
//find minimum
int min(int one, int two, int three)
{
if (one <= two && one <= three)
return one;
if (two <= one && two <= three)
return two;
return three;
}
//divide and conquer way of find the cost of the optimal path
int optMethod(int i, int j)
{
if (i == m)
return 2 * (n - j);
else if (j == n)
return 2 * (m - i);
else {
if (x[i] == y[j])
penalty = 0;
else
penalty = 1;
return min(optMethod(i + 1,j + 1) + penalty, optMethod(i + 1,j) + 2, optMethod(i,j + 1) + 2);
}
}
//dynamic programming way of finding cost of optimal path
void dynamicOptimal(vector<vector<int>>& opt1) {
for (int i = m; i >= 0; i--) {
for (int j = n; j >= 0; j--) {
if (i == m)
opt1[m][j] = 2 * (n - j);
else if (j == n)
opt1[i][n] = 2 * (m - i);
else {
if (x[i] == y[j])
penalty = 0;
else
penalty = 1;
opt1[i][j] = min(opt1[i+1][j+1] + penalty, opt1[i+1][j] + 2, opt1[i][j+1] + 2);
}
}
}
}
int main() {
m = sizeof(x);
n = sizeof(y);
//divide and conquer
cout << optMethod(0, 0) << endl;
//dynamic
vector <vector<int> > optimal(m+1, vector<int>(n+1, 0));
dynamicOptimal(optimal);
cout<<optimal[0][0]<<endl;
cin.get();
return 0;
}
我现在得到的是给予额外的惩罚,但我无法弄清楚在哪里。 [注意]我知道我没有使用std :: min,我知道它在那里
答案 0 :(得分:0)
你应该改变:
if (two <= one && two <= two)
return two;
return three;
使用:
if (two <= one && two <= three)
return two;
return three;