Python numpy数组赋值为整数索引的平面切片

时间:2016-10-12 11:15:33

标签: python arrays python-2.7 numpy slice

在学习numpy时,我编写了执行LSB(隐写术)加密的代码:

DatabaseManager().retrieve_artist('asdf')

AnyOtherClass().callAnyMethod()

# both disappeared 

代码工作正常,但是当我尝试ClassWithClassMethods.callAnyClassMethod() 这一行时:

def str2bits_nparray(s):
    return np.array(map(int, (''.join(map('{:07b}'.format, bytearray(s))))), dtype=np.bool)

def LSB_encode(img, msg, channel):
    msg_bits = str2bits_nparray(msg)
    xor_mask = np.zeros_like(img, dtype=np.bool)
    xor_mask[:, :, channel].flat[:len(msg_bits)] = np.ones_like(msg_bits, dtype=np.bool)
    img[xor_mask] = img[xor_mask] >> 1 << 1 | msg_bits


msg = 'A' * 1000
img_name = 'screenshot.png'
chnl = 2
img = imread(img_name)
LSB_encode(img, msg, chnl)

不会使用

将值分配给chnl = [2, 1]

xor_mask[:, :, channel].flat[:len(msg_bits)] = np.ones_like(msg_bits, dtype=np.bool) [2,1] xor_mask

有办法解决这个问题吗?

我尝试使用for-loop over channel进行解决方案:

xor_mask[:, :,

但这不是我想要的

].flat[:len(msg_bits)] [2,1] for ch in channel: xor_mask[:, :, ch].flat[:len(msg_bits)] = np.ones_like(msg_bits, dtype=np.bool)

1 个答案:

答案 0 :(得分:1)

IIUC,这是一种获取线性指数的方法,然后切片到no的长度。需要设置的元素然后执行设置 -

m,n,r = xor_mask.shape  # Store shape info

# Create range arrays corresponding to those shapes
x,y,z = np.ix_(np.arange(m),np.arange(n),channel)

# Get the indices to be set and finaally perform the setting
idx = (x*n*r + y*r + z).ravel()[:len(msg_bits)]
xor_mask.ravel()[idx] = 1

示例运行 -

In [180]: xor_mask
Out[180]: 
array([[[25, 84, 37, 96, 72, 84, 91],
        [94, 56, 78, 71, 48, 65, 98]],

       [[33, 56, 14, 92, 90, 64, 76],
        [71, 71, 77, 31, 96, 36, 49]]])

In [181]: # Other inputs
     ...: channel = np.array([2,1])
     ...: msg_bits = np.array([2,3,6,1,4])
     ...: 

In [182]: m,n,r = xor_mask.shape  # Store shape info
     ...: x,y,z = np.ix_(np.arange(m),np.arange(n),channel)
     ...: idx = (x*n*r + y*r + z).ravel()[:len(msg_bits)]
     ...: xor_mask.ravel()[idx] = 1
     ...: 

In [183]: xor_mask # First 5 elems from flattend version
                   # of xor_mask[:,:,channel] set as 1 
                   # as len(msg_bits) = 5.
Out[183]: 
array([[[25,  1,  1, 96, 72, 84, 91],
        [94,  1,  1, 71, 48, 65, 98]],

       [[33, 56,  1, 92, 90, 64, 76],
        [71, 71, 77, 31, 96, 36, 49]]])

相反,如果您尝试在3D channel的第一个2输入数组中的所有维度中设置所有元素,然后沿第二个1设置所有元素等等,我们需要以不同方式创建idx,如此 -

idx = (x*n*r + y*r + z).transpose(2,0,1).ravel()[:len(msg_bits)]