您好我有这样的数据框:
A B
0: some value [[L1, L2]]
我想将其更改为:
A B
0: some value L1
1: some value L2
我该怎么做?
答案 0 :(得分:17)
你可以这样做:
In [84]: df
Out[84]:
A B
0 some value [[L1, L2]]
1 another value [[L3, L4, L5]]
In [85]: (df['B'].apply(lambda x: pd.Series(x[0]))
....: .stack()
....: .reset_index(level=1, drop=True)
....: .to_frame('B')
....: .join(df[['A']], how='left')
....: )
Out[85]:
B A
0 L1 some value
0 L2 some value
1 L3 another value
1 L4 another value
1 L5 another value
答案 1 :(得分:7)
使用chain.from_iterable
和numpy.repeat
加快解决方案:
"string1"
"string2"
"string3"
<强>计时强>:
from itertools import chain
import numpy as np
import pandas as pd
df = pd.DataFrame({'A':['a','b'],
'B':[[['A1', 'A2']],[['A1', 'A2', 'A3']]]})
print (df)
A B
0 a [[A1, A2]]
1 b [[A1, A2, A3]]
df1 = pd.DataFrame({ "A": np.repeat(df.A.values,
[len(x) for x in (chain.from_iterable(df.B))]),
"B": list(chain.from_iterable(chain.from_iterable(df.B)))})
print (df1)
A B
0 a A1
1 a A2
2 b A1
3 b A2
4 b A3
答案 2 :(得分:5)
df1 = pd.DataFrame({'A':['a','b'],
'B':[[['1', '2']],[['3', '4', '5']]]})
print(df1)
A B
0 a [[1, 2]]
1 b [[3, 4, 5]]
df1 = df1.explode('B')
df1.explode('B')
A B
0 a 1
0 a 2
1 b 3
1 b 4
1 b 5
我不知道这种方法有多好,但是当您有项目列表时,它会起作用。
答案 3 :(得分:3)
我无法找到一种优雅的方式来处理这个问题,但以下代码可以正常工作......
import pandas as pd
import numpy as np
df = pd.DataFrame([{"a":1,"b":[[1,2]]},{"a":4, "b":[[3,4,5]]}])
z = []
for k,row in df.iterrows():
for j in list(np.array(row.b).flat):
z.append({'a':row.a, 'b':j})
result = pd.DataFrame(z)
答案 4 :(得分:0)
我认为这是最快,最简单的方法:
not
答案 5 :(得分:0)
这是另一个选择
unpacked = (pd.melt(df.B.apply(pd.Series).reset_index(),id_vars='index')
.merge(df, left_on = 'index', right_index = True))
unpacked = (unpacked.loc[unpacked.value.notnull(),:]
.drop(columns=['index','variable','B'])
.rename(columns={'value':'B'})