段树中的更新

时间:2016-10-08 07:09:05

标签: algorithm segment-tree

我正在学习段树,我遇到了这个问题。 有阵列A和2类型的操作

1. Find the Sum in Range L to R 
2. Update the Element in Range L to R by Value X.

更新应该是这样的

A[L] = 1*X;
A[L+1] = 2*X;
A[L+2] = 3*X;
A[R] = (R-L+1)*X;

我应该如何处理第二类查询,任何人都可以通过分段树给出一些算法来修改,或者有更好的解决方案

2 个答案:

答案 0 :(得分:4)

因此,需要使用步骤[L,R] 有效地更新区间X算术级数的相应值,并且能够有效地找到不同时间间隔的总和。

为了有效地解决这个问题 - 让我们使用带有懒惰传播的细分树

基本思路如下:

  • 算术级数可以由firstlast项以及amount of items

  • 定义
  • 可以通过组合两个不同算术进度的firstlast项来获得新的算术级数具有相同数量的物品)。新算术级数的firstlast项只是组合算术级数的相应项的组合

  • 因此,我们可以与细分树的每个节点相关联 - 算术级数的firstlast值,这些值跨越给定的间隔

  • 在更新期间,对于所有受影响的时间间隔,我们可以懒惰地在段树中传播 - firstlast项的值,并在这些时间间隔内更新聚合总和。 / p>

因此,给定问题的Segment Tree节点将具有结构:

class Node {
    int left; // Left boundary of the current SegmentTree node
    int right; // Right boundary of the current SegmentTree node

    int sum; // Sum on the interval [left,right]

    int first; // First item of arithmetic progression inside given node
    int last; // Last item of arithmetic progression

    Node left_child;
    Node right_child;

    // Constructor
    Node(int[] arr, int l, int r) { ... }

    // Add arithmetic progression with step X on the interval [l,r]
    // O(log(N))
    void add(int l, int r, int X) { ... }

    // Request the sum on the interval [l,r]
    // O(log(N))
    int query(int l, int r) { ... }

    // Lazy Propagation
    // O(1)
    void propagate() { ... }
}

具有延迟传播的段树的特殊性是这样的,每次遍历树的节点时 - 懒惰传播例程(具有复杂性 O(1) )是为给定节点执行的。因此,下面提供了一些任意节点的懒惰传播逻辑的说明,该节点有子节点:

enter image description here

如您所见,在Lazy Propagation期间,子节点的算术进程的firstlast项都会更新,父节点内的sum也会更新同样。

实施

下面提供了所描述方法的Java实现(附加注释):

class Node {
    int left; // Left boundary of the current SegmentTree node
    int right; // Right boundary of the current SegmentTree node
    int sum; // Sum on the interval
    int first; // First item of arithmetic progression
    int last; // Last item of arithmetic progression
    Node left_child;
    Node right_child;

    /**
     * Construction of a Segment Tree
     * which spans over the interval [l,r]
     */
    Node(int[] arr, int l, int r) {
        left = l;
        right = r;
        if (l == r) { // Leaf
            sum = arr[l];
        } else { // Construct children
            int m = (l + r) / 2;
            left_child = new Node(arr, l, m);
            right_child = new Node(arr, m + 1, r);
            // Update accumulated sum
            sum = left_child.sum + right_child.sum;
        }
    }

    /**
     * Lazily adds the values of the arithmetic progression
     * with step X on the interval [l, r]
     * O(log(N))
     */
    void add(int l, int r, int X) {
        // Lazy propagation
        propagate();
        if ((r < left) || (right < l)) {
            // If updated interval doesn't overlap with current subtree
            return;
        } else if ((l <= left) && (right <= r)) {
            // If updated interval fully covers the current subtree
            // Update the first and last items of the arithmetic progression
            int first_item_offset = (left - l) + 1;
            int last_item_offset = (right - l) + 1;
            first = X * first_item_offset;
            last = X * last_item_offset;
            // Lazy propagation
            propagate();
        } else {
            // If updated interval partially overlaps with current subtree
            left_child.add(l, r, X);
            right_child.add(l, r, X);
            // Update accumulated sum
            sum = left_child.sum + right_child.sum;
        }
    }

    /**
     * Returns the sum on the interval [l, r]
     * O(log(N))
     */
    int query(int l, int r) {
        // Lazy propagation
        propagate();
        if ((r < left) || (right < l)) {
            // If requested interval doesn't overlap with current subtree
            return 0;
        } else if ((l <= left) && (right <= r)) {
            // If requested interval fully covers the current subtree
            return sum;
        } else {
            // If requested interval partially overlaps with current subtree
            return left_child.query(l, r) + right_child.query(l, r);
        }
    }

    /**
     * Lazy propagation
     * O(1)
     */
    void propagate() {
        // Update the accumulated value
        // with the sum of Arithmetic Progression
        int items_count = (right - left) + 1;
        sum += ((first + last) * items_count) / 2;
        if (right != left) { // Current node is not a leaf
            // Calculate the step of the Arithmetic Progression of the current node
            int step = (last - first) / (items_count - 1);
            // Update the first and last items of the arithmetic progression
            // inside the left and right subtrees
            // Distribute the arithmetic progression between child nodes
            // [a(1) to a(N)] -> [a(1) to a(N/2)] and [a(N/2+1) to a(N)]
            int mid = (items_count - 1) / 2;
            left_child.first += first;
            left_child.last += first + (step * mid);
            right_child.first += first + (step * (mid + 1));
            right_child.last += last;
        }
        // Reset the arithmetic progression of the current node
        first = 0;
        last = 0;
    }
}

提供的解决方案中的Segment Tree是使用对象和引用显式实现的,但是可以很容易地修改它以便使用数组。

测试

下面提供了随机测试,比较了两种实现:

  • 通过使用 O(N)顺序增加数组的每个项目来处理查询,并使用 O(N)计算间隔的总和
  • 使用带有 O(log(N))复杂性的段树处理相同的查询:

随机测试的Java实现:

public static void main(String[] args) {
    // Initialize the random generator with predefined seed,
    // in order to make the test reproducible
    Random rnd = new Random(1);

    int test_cases_num = 20;
    int max_arr_size = 100;
    int num_queries = 50;
    int max_progression_step = 20;

    for (int test = 0; test < test_cases_num; test++) {
        // Create array of the random length
        int[] arr = new int[rnd.nextInt(max_arr_size) + 1];
        Node segmentTree = new Node(arr, 0, arr.length - 1);

        for (int query = 0; query < num_queries; query++) {
            if (rnd.nextDouble() < 0.5) {
                // Update on interval [l,r]
                int l = rnd.nextInt(arr.length);
                int r = rnd.nextInt(arr.length - l) + l;
                int X = rnd.nextInt(max_progression_step);
                update_sequential(arr, l, r, X); // O(N)
                segmentTree.add(l, r, X); // O(log(N))
            }
            else {
                // Request sum on interval [l,r]
                int l = rnd.nextInt(arr.length);
                int r = rnd.nextInt(arr.length - l) + l;
                int expected = query_sequential(arr, l, r); // O(N)
                int actual = segmentTree.query(l, r); // O(log(N))
                if (expected != actual) {
                    throw new RuntimeException("Results are different!");
                }
            }
        }
    }
    System.out.println("All results are equal!");
}

static void update_sequential(int[] arr, int left, int right, int X) {
    for (int i = left; i <= right; i++) {
        arr[i] += X * ((i - left) + 1);
    }
}

static int query_sequential(int[] arr, int left, int right) {
    int sum = 0;
    for (int i = left; i <= right; i++) {
        sum += arr[i];
    }
    return sum;
}

答案 1 :(得分:0)

基本上,您需要制作一棵树,然后使用延迟传播进行更新,这是实现。

int tree[1 << 20], Base = 1 << 19;
int lazy[1 << 20];
void propagation(int v){ //standard propagation
  tree[v * 2] += lazy[v];
  tree[v * 2 + 1] += lazy[v];
  lazy[v * 2] += lazy[v];
  lazy[v * 2 + 1] += lazy[v];
  lazy[v] == 0;
}
void update(int a, int b, int c, int v = 1, int p = 1, int k = Base){
  if(p > b || k < a) return; //if outside range [a, b]
  propagation(v);
  if(p >= a && k <= b){ // if fully inside range [a, b]
    tree[v] += c;
    lazy[v] += c;
    return;
  }
  update(a, b, c, v * 2, p, (p + k) / 2); //left child
  update(a, b, c, v * 2 + 1, (p + k) / 2 + 1, k); //right child
  tree[v] = tree[v * 2] + tree[v * 2 + 1]; //update current node
}
int query(int a, int b, int v = 1, int p = 1, int k = Base){
  if(p > b || k < a) //if outside range [a, b]
    return 0;
  propagation(v);
  if(p >= a && k <= b) // if fully inside range [a, b]
    return tree[v];
  int res = 0;
  res += query(a, b, c, v * 2, p, (p + k) / 2); //left child
  res += query(a, b, c, v * 2 + 1, (p + k) / 2 + 1, k); //right child
  tree[v] = tree[v * 2] + tree[v * 2 + 1]; //update current node
  return res;
}

更新功能显然会更新树,因此它将树添加到间隔为[a,b](或[L,R])的节点上

update(L, R, value);

查询功能只是给您范围内的元素之和

query(L, R);