我有2个数据框,一个名为USERS,另一个名为EXCLUDE。他们俩都有一个名为" email"。
的字段基本上,我想删除USERS中包含EXCLUDE中包含的电子邮件的每一行。
我该怎么做?
答案 0 :(得分:17)
您可以使用boolean indexing
并使用isin
条件,反转布尔Series
是~
:
import pandas as pd
USERS = pd.DataFrame({'email':['a@g.com','b@g.com','b@g.com','c@g.com','d@g.com']})
print (USERS)
email
0 a@g.com
1 b@g.com
2 b@g.com
3 c@g.com
4 d@g.com
EXCLUDE = pd.DataFrame({'email':['a@g.com','d@g.com']})
print (EXCLUDE)
email
0 a@g.com
1 d@g.com
print (USERS.email.isin(EXCLUDE.email))
0 True
1 False
2 False
3 False
4 True
Name: email, dtype: bool
print (~USERS.email.isin(EXCLUDE.email))
0 False
1 True
2 True
3 True
4 False
Name: email, dtype: bool
print (USERS[~USERS.email.isin(EXCLUDE.email)])
email
1 b@g.com
2 b@g.com
3 c@g.com
merge
的另一个解决方案:
df = pd.merge(USERS, EXCLUDE, how='outer', indicator=True)
print (df)
email _merge
0 a@g.com both
1 b@g.com left_only
2 b@g.com left_only
3 c@g.com left_only
4 d@g.com both
print (df.loc[df._merge == 'left_only', ['email']])
email
1 b@g.com
2 b@g.com
3 c@g.com
答案 1 :(得分:1)
我的解决方案是找到共同的元素,提取共享密钥,然后使用该密钥将它们从原始数据中删除:
class newClass {
public $property1;
public $property2;
public function NewFunction {
return 'Something';
}
}
$array = array();
for($i = 0; $i < 2; $i++ {
$temp = new newClass;
$temp -> property2 = 'SomeData';
$array[$i] = $temp;
$array[$i] -> property1 = 'Random';
unset($temp);
}
答案 2 :(得分:1)
为了扩展 jezrael 的答案,可以使用相同的方法来过滤基于多列的行。
USERS = pd.DataFrame({"email": ["a@g.com", "b@g.com", "c@g.com",
"d@g.com", "e@g.com"],
"name": ["a", "s", "d",
"f", "g"],
"nutrient_of_choice": ["pizza", "corn", "bread",
"coffee", "sausage"]})
print(USERS)
email name nutrient_of_choice
0 a@g.com a pizza
1 b@g.com s corn
2 c@g.com d bread
3 d@g.com f coffee
4 e@g.com g sausage
EXCLUDE = pd.DataFrame({"email":["x@g.com", "d@g.com"],
"name": ["a", "f"]})
print(EXCLUDE)
email name
0 x@g.com a
1 d@g.com f
现在,假设我们只想过滤具有匹配姓名和电子邮件的行:
USERS = pd.merge(USERS, EXCLUDE, on=["email", "name"], how="outer", indicator=True)
print(USERS)
email name nutrient_of_choice _merge
0 a@g.com a pizza left_only
1 b@g.com s corn left_only
2 c@g.com d bread left_only
3 d@g.com f coffee both
4 e@g.com g sausage left_only
5 x@g.com a NaN right_only
USERS = USERS.loc[USERS["_merge"] == "left_only"].drop("_merge", axis=1)
print(USERS)
email name nutrient_of_choice
0 a@g.com a pizza
1 b@g.com s corn
2 c@g.com d bread
4 e@g.com g sausage
答案 3 :(得分:0)
您还可以使用内部联接,在USERS中获取带有电子邮件EXCLUDE的索引或行,然后将其从USERS中删除。下面,我使用@jezrael示例进行显示:
import pandas as pd
USERS = pd.DataFrame({'email': ['a@g.com',
'b@g.com',
'b@g.com',
'c@g.com',
'd@g.com']})
EXCLUDE = pd.DataFrame({'email':['a@g.com',
'd@g.com']})
# rows in USERS and EXCLUDE with the same email
duplicates = pd.merge(USERS, EXCLUDE, how='inner',
left_on=['email'], right_on=['email'],
left_index=True)
# drop the indices from USERS
USERS = USERS.drop(duplicates.index)
此返回:
USERS
email
2 b@g.com
3 c@g.com
4 d@g.com