我试图在时间序列数据框中插入缺少的工作日,例如
import pandas as pd
from pandas.tseries.offsets import *
df = pd.DataFrame([['2016-09-30', 10, 2020], ['2016-10-03', 20, 2424], ['2016-10-05', 5, 232]], columns=['date', 'price', 'vol']).set_index('date')
df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date')
数据如下所示:
Out[300]:
price vol
date
2016-09-30 10 2020
2016-10-03 20 2424
2016-10-05 5 232
我可以使用pd.date_range()
pd.date_range('2016-09-30', '2016-10-05', freq=BDay())
Out[301]: DatetimeIndex(['2016-09-30', '2016-10-03', '2016-10-04', '2016-10-05'], dtype='datetime64[ns]', freq='B')
基于DateTimeIndex我想在df
中添加缺少的日期,并用NaN填充列值,所以我得到:
Out[300]:
price vol
date
2016-09-30 10 2020
2016-10-03 20 2424
2016-10-04 NaN NaN
2016-10-05 5 232
有一种简单的方法吗?谢谢!
答案 0 :(得分:2)
或者,您可以使用pandas.DataFrame.resample(),指定' B' 营业日,无需指定开始日期或结束日期序列,因为数据框架维护日期时间索引
df = df.resample('B').sum()
# price vol
# date
# 2016-09-30 10.0 2020.0
# 2016-10-03 20.0 2424.0
# 2016-10-04 NaN NaN
# 2016-10-05 5.0 232.0
答案 1 :(得分:1)
您可以使用reindex:
CoTaskMemFree()