我有物种(列)数据帧的样本(行)。以及另一个数据帧中的列,用于将样本编码为组。我想选择所有组中的所有样本都具有非零值的所有列。
物种框架:
structure(list(Otu000132 = c(0L, 56L, 30L, 52L, 1L, 4L, 31L, 4L, 17L, 9L, 4L),
Otu000144 = c(191L, 14L, 58L, 137L, 127L, 222L, 26L, 175L, 133L, 107L, 43L),
Otu000146 = c(0L, 0L, 0L, 0L, 16L, 62L, 41L, 16L, 60L, 32L, 0L),
Otu000147 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
Otu000151 = c(2L, 9L, 4L, 1L, 0L, 4L, 4L, 2L, 3L, 0L, 0L),
Otu000162 = c(2L, 1L, 0L, 0L, 1L, 1L, 0L, 2L, 1L, 0L, 0L),
Otu000164 = c(2L, 0L, 1L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
Otu000174 = c(0L, 0L, 3L, 1L, 0L, 2L, 0L, 1L, 2L, 1L, 0L),
Otu000176 = c(1L, 9L, 0L, 1L, 2L, 5L, 3L, 3L, 8L, 2L, 2L),
Otu000186 = c(1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L),
Otu000190 = c(1L, 1L, 1L, 0L, 0L, 5L, 1L, 2L, 7L, 0L, 0L)),
.Names = c("Otu000132", "Otu000144", "Otu000146", "Otu000147",
"Otu000151", "Otu000162", "Otu000164", "Otu000174",
"Otu000176", "Otu000186", "Otu000190"),
row.names = 30:40, class = "data.frame")
分组框架:
structure(c(30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3),
.Dim = c(11L, 2L))
期望的输出:
structure(list(Otu000132 = c(0L, 56L, 30L, 52L, 1L, 4L, 31L, 4L, 17L, 9L, 4L),
Otu000144 = c(191L, 14L, 58L, 137L, 127L, 222L, 26L, 175L, 133L, 107L, 43L),
Otu000151 = c(2L, 9L, 4L, 1L, 0L, 4L, 4L, 2L, 3L, 0L, 0L),
Otu000176 = c(1L, 9L, 0L, 1L, 2L, 5L, 3L, 3L, 8L, 2L, 2L),
Otu000190 = c(1L, 1L, 1L, 0L, 0L, 5L, 1L, 2L, 7L, 0L, 0L)),
.Names = c("Otu000132", "Otu000144", "Otu000151",
"Otu000176", "Otu000190"),
row.names = 30:40, class = "data.frame")
我觉得这应该是我可以用dplyr select做的事情,但我无法理解。任何人都有建议让我在路上开始吗?
答案 0 :(得分:1)
这确实可以通过 dplyr 完成,并且以相当简单的方式完成。正如其他人所指出的那样," Otu000146"不符合您描述的标准,不会包含在最终的列选择中。
GatewayPorts yes
答案 1 :(得分:1)
我们split
第一列分组数据集('gp1')由第二列(gp1[,2]
)到list
,循环遍历list
,行子集通过将其行名称与list
元素进行匹配来获取物种数据集,获取逻辑矩阵(x1==0
)的列总和,检查是否大于0,比较每个{{1在list
中使用&
的元素,否定(Reduce
)索引将TRUE更改为FALSE(反之亦然)以将物种数据集的列子集化。
!
答案 2 :(得分:0)
您可以使用dplyr
或仅使用基本功能:
species = merge(species, group, by.x=c("row.names"), by.y=c("V1"))
#Find the lowest values in each grouping
check = aggregate(species[,c("Otu000132", "Otu000144", "Otu000146",
"Otu000147", "Otu000151", "Otu000162", "Otu000164",
"Otu000174", "Otu000176", "Otu000186", "Otu000190")],
by=list(species$V2), min)
#sum across the groupings
vars = apply(check, 2, function(x) sum(x))
#retain variables where sum > 1, indicating at least one grouping has full observations
vars = vars[vars!=0]
#extract the variable names
vars = names(vars)[-1]
#subset dataset to select variables identified above
out = species[vars]
out
# Otu000132 Otu000144 Otu000151 Otu000176 Otu000190
#1 0 191 2 1 1
#2 56 14 9 9 1
#3 30 58 4 0 1
#4 52 137 1 1 0
#5 1 127 0 2 0
#6 4 222 4 5 5
#7 31 26 4 3 1
#8 4 175 2 3 2
#9 17 133 3 8 7
#10 9 107 0 2 0
#11 4 43 0 2 0