我一直在尝试运行我从here得到的代码,尽管我几乎没有改变图像大小(350,350而不是150,150),但仍然无法使其工作。我得到上面的过滤器错误(标题中),我理解但我没有做错,所以我不明白这一点。它基本上说我不能拥有比输入更多的节点,对吗?
我最终通过改变这一行来破解我的解决方案:
model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(3, IMG_WIDTH, IMG_HEIGHT)))
用这个:
model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)))
但我仍然想知道为什么会这样。
下面的代码以及我得到的错误。非常感谢一些帮助(我正在使用Python Anaconda 2.7.11)。
# IMPORT LIBRARIES --------------------------------------------------------------------------------#
import glob
import tensorflow
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from settings import RAW_DATA_ROOT
# GLOBAL VARIABLES --------------------------------------------------------------------------------#
TRAIN_PATH = RAW_DATA_ROOT + "/train/"
TEST_PATH = RAW_DATA_ROOT + "/test/"
IMG_WIDTH, IMG_HEIGHT = 350, 350
NB_TRAIN_SAMPLES = len(glob.glob(TRAIN_PATH + "*"))
NB_VALIDATION_SAMPLES = len(glob.glob(TEST_PATH + "*"))
NB_EPOCH = 50
# FUNCTIONS ---------------------------------------------------------------------------------------#
def baseline_model():
"""
The Keras library provides wrapper classes to allow you to use neural network models developed
with Keras in scikit-learn. The code snippet below is used to construct a simple stack of 3
convolution layers with a ReLU activation and followed by max-pooling layers. This is very
similar to the architectures that Yann LeCun advocated in the 1990s for image classification
(with the exception of ReLU).
:return: The training model.
"""
model = Sequential()
model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(3, IMG_WIDTH, IMG_HEIGHT)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 5, 5, border_mode='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, 5, 5, border_mode='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Add a fully connected layer layer that converts our 3D feature maps to 1D feature vectors
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
# Use a dropout layer to reduce over-fitting, by preventing a layer from seeing twice the exact
# same pattern (works by switching off a node once in a while in different epochs...). This
# will also serve as out output layer.
model.add(Dropout(0.5))
model.add(Dense(8))
model.add(Activation('softmax'))
# Compile model
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
def train_model(model):
"""
Simple script that uses the baseline model and returns a trained model.
:param model: model
:return: model
"""
# Define the augmentation configuration we will use for training
TRAIN_DATAGEN = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# Build the train generator
TRAIN_GENERATOR = TRAIN_DATAGEN.flow_from_directory(
TRAIN_PATH,
target_size=(IMG_WIDTH, IMG_HEIGHT),
batch_size=32,
class_mode='categorical')
TEST_DATAGEN = ImageDataGenerator(rescale=1. / 255)
# Build the validation generator
TEST_GENERATOR = TEST_DATAGEN.flow_from_directory(
TEST_PATH,
target_size=(IMG_WIDTH, IMG_HEIGHT),
batch_size=32,
class_mode='categorical')
# Train model
model.fit_generator(
TRAIN_GENERATOR,
samples_per_epoch=NB_TRAIN_SAMPLES,
nb_epoch=NB_EPOCH,
validation_data=TEST_GENERATOR,
nb_val_samples=NB_VALIDATION_SAMPLES)
# Always save your weights after training or during training
model.save_weights('first_try.h5')
# END OF FILE -------------------------------------------------------------------------------------#
和错误:
Using TensorFlow backend.
Training set: 0 files.
Test set: 0 files.
Traceback (most recent call last):
File "/Users/christoshadjinikolis/GitHub_repos/datareplyuk/ODSC_Facial_Sentiment_Analysis/src/model/__init__.py", line 79, in <module>
model = baseline_model()
File "/Users/christoshadjinikolis/GitHub_repos/datareplyuk/ODSC_Facial_Sentiment_Analysis/src/model/training_module.py", line 31, in baseline_model
model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(3, IMG_WIDTH, IMG_HEIGHT)))
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/models.py", line 276, in add
layer.create_input_layer(batch_input_shape, input_dtype)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/engine/topology.py", line 370, in create_input_layer
self(x)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/engine/topology.py", line 514, in __call__
self.add_inbound_node(inbound_layers, node_indices, tensor_indices)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/engine/topology.py", line 572, in add_inbound_node
Node.create_node(self, inbound_layers, node_indices, tensor_indices)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/engine/topology.py", line 149, in create_node
output_tensors = to_list(outbound_layer.call(input_tensors[0], mask=input_masks[0]))
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/layers/convolutional.py", line 466, in call
filter_shape=self.W_shape)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/backend/tensorflow_backend.py", line 1579, in conv2d
x = tf.nn.conv2d(x, kernel, strides, padding=padding)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/ops/gen_nn_ops.py", line 394, in conv2d
data_format=data_format, name=name)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 703, in apply_op
op_def=op_def)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2319, in create_op
set_shapes_for_outputs(ret)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1711, in set_shapes_for_outputs
shapes = shape_func(op)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 246, in conv2d_shape
padding)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 184, in get2d_conv_output_size
(row_stride, col_stride), padding_type)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 149, in get_conv_output_size
"Filter: %r Input: %r" % (filter_size, input_size))
ValueError: Filter must not be larger than the input: Filter: (5, 5) Input: (3, 350)
答案 0 :(得分:7)
问题是input_shape()的顺序会根据您使用的后端(tensorflow或theano)而改变。
我找到的最佳解决方案是在文件~/.keras/keras.json
中定义此订单。
Try to use the theano order with tensorflow backend, or theano order with theano backend.
在家中创建keras目录并创建keras json:mkdir ~/.keras && touch ~/.keras/keras.json
{
"image_dim_ordering": "th",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
答案 1 :(得分:5)
当我关注教程时,我自己遇到了同样的问题。正如@Yao Zhang所指出的那样,错误是由input_shape
中的顺序引起的。有多种方法可以解决这个问题。
input_shape
代码行
model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(3, IMG_WIDTH, IMG_HEIGHT)))
应改为
model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)))
那应该没问题。
选项2:在图层中指定image_dim_ordering
选项3:通过在〜/ .keras / keras.json中将'tf'更改为'th'来修改keras配置文件