我正在使用tensorflow的imageNet训练模型对多个类别的图像进行分类。
我将脚本classify.py编辑为
import tensorflow as tf
import sys
import glob
import os
import pandas as pd
# Disable tensorflow compilation warnings
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
test_path = '/Users/kaustubhmundra/Desktop/Multi-Class Classifier/test'
classes = ['room','reception','washroom','facade']
result = pd.DataFrame(columns = ['facade','washroom','room','reception'])
def predict(image_path):
#image_path = sys.argv[1]
# Read the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("tf_files/retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("tf_files/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# print(predictions)
pred = pd.DataFrame(predictions,columns = ['facade','washroom','room','reception'])
# print(pred)
global result
result = result.append(pred)
# print(result)
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
path = os.path.join(test_path, '*')
files = sorted(glob.glob(path))
i=1
for fl in files:
print(i)
i = i + 1
predict(fl)
result.to_csv('predictions.csv')
虽然我使用它来预测图像,但它可以完美地工作直到24个图像,但随后显示错误:
文件 " /Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/framework/ops.py" ;, 第2154行,在_as_graph_def中 提高ValueError(" GraphDef不能大于2GB。")ValueError:GraphDef不能大于2GB。
如何解决此问题?
答案 0 :(得分:0)
每次调用predict()时都会导入图表,因此您需要累积一个非常大的默认graphdef。您应该更改代码,以便只在预测函数之外加载图表(文件'部分中的#Unpersists图表)。这也应该大大加快你的代码。