如何在python中使用插值绘制精度回忆曲线?

时间:2016-10-03 17:16:09

标签: python numpy matplotlib scikit-learn precision-recall

我使用sklearn precision_recall_curve函数和matplotlib包绘制了精确回忆曲线。对于那些熟悉精确回忆曲线的人来说,你知道一些科学界只在插入它时才接受它,类似于这个例子here。现在我的问题是,如果你们中的任何人知道如何在python中进行插值?我一直在寻找解决方案,但没有成功!任何帮助将不胜感激。

解决方案: @francis和@ali_m的解决方案都是正确的,一起解决了我的问题。因此,假设您从precision_recall_curve中的sklearn函数获得输出,以下是我绘制图形的方法:

        precision["micro"], recall["micro"], _ = precision_recall_curve(y_test.ravel(),scores.ravel())
        pr = copy.deepcopy(precision[0])
        rec = copy.deepcopy(recall[0])
        prInv = np.fliplr([pr])[0]
        recInv = np.fliplr([rec])[0]
        j = rec.shape[0]-2
        while j>=0:
            if prInv[j+1]>prInv[j]:
                prInv[j]=prInv[j+1]
            j=j-1
        decreasing_max_precision = np.maximum.accumulate(prInv[::-1])[::-1]
        plt.plot(recInv, decreasing_max_precision, marker= markers[mcounter], label=methodNames[countOfMethods]+': AUC={0:0.2f}'.format(average_precision[0]))

如果将这些线放入for循环中,这些线将绘制插值曲线,并在每次迭代时将每个方法的数据传递给它。请注意,这不会绘制非插值的精确调用曲线。

2 个答案:

答案 0 :(得分:4)

@ francis的解决方案可以使用np.maximum.accumulate进行矢量化。

import numpy as np
import matplotlib.pyplot as plt

recall = np.linspace(0.0, 1.0, num=42)
precision = np.random.rand(42)*(1.-recall)

# take a running maximum over the reversed vector of precision values, reverse the
# result to match the order of the recall vector
decreasing_max_precision = np.maximum.accumulate(precision[::-1])[::-1]

您还可以使用plt.step删除用于绘图的for循环:

fig, ax = plt.subplots(1, 1)
ax.hold(True)
ax.plot(recall, precision, '--b')
ax.step(recall, decreasing_max_precision, '-r')

enter image description here

答案 1 :(得分:2)

可以执行反向迭代以删除precision中增加的部分。然后,可以按照Bennett Brown对vertical & horizontal lines in matplotlib的答案中的规定绘制垂直和水平线。

以下是示例代码:

import numpy as np
import matplotlib.pyplot as plt

#just a dummy sample
recall=np.linspace(0.0,1.0,num=42)
precision=np.random.rand(42)*(1.-recall)
precision2=precision.copy()
i=recall.shape[0]-2

# interpolation...
while i>=0:
    if precision[i+1]>precision[i]:
        precision[i]=precision[i+1]
    i=i-1

# plotting...
fig, ax = plt.subplots()
for i in range(recall.shape[0]-1):
    ax.plot((recall[i],recall[i]),(precision[i],precision[i+1]),'k-',label='',color='red') #vertical
    ax.plot((recall[i],recall[i+1]),(precision[i+1],precision[i+1]),'k-',label='',color='red') #horizontal

ax.plot(recall,precision2,'k--',color='blue')
#ax.legend()
ax.set_xlabel("recall")
ax.set_ylabel("precision")
plt.savefig('fig.jpg')
fig.show()

结果如下:

enter image description here