问题陈述:
给定n个整数数组,在新行上查找并打印其负数子数。(如果子元素的总和为负,则子数组为负数。)
示例输入
5
1 -2 4 -5 1
示例输出
9
我的代码产生的结果
输入(stdin)
5
1 -2 4 -5 1
你的输出(标准输出)
7
预期产出
9
编译器消息
错误答案
我的代码:
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int a[] = new int[n];
int b[] = new int[n];
int count=0;
int i,j,sum = 0;
for(i=0;i<n;i++)
{
a[i] = scan.nextInt();
}
for(i=0;i<n;i++)
{
if(a[i]<0){count++;}
}
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
sum = a[i] + sum;
b[j] = sum;
}
}
for(j=0;j<n;j++)
{
if(b[j]<0){count++;}
}
System.out.println(count);
}
}
我哪里错了?
答案 0 :(得分:0)
对之前的逻辑进行了一些更改,现在这段代码运行正常。
import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int a[] = new int[n];
int count=0;
int i,j,sum = 0;
for(i=0;i<n;i++)
{
a[i] = scan.nextInt();
}
scan.close();
for(i=0;i<n;i++)
{
sum = 0;
for(j=i;j<n;j++)
{
sum = a[j] + sum;
if(sum<0){
count++;
}
}
}
System.out.println(count);
}
}
答案 1 :(得分:0)
基于计数反转的思想在O(nlogn)中运行的解决方案
prefix[i] > prefix[j] when i < j
时计数前缀和数组中的求反,在prefix[j] < 0
时也计数时间复杂度像合并排序一样分析
import java.util.*;
public class NegativeSumSubarray {
public static void main(String[] args) {
int[] array = { 1, -2, 4, -5, 1 };
int[] prefixSum = new int[array.length];
prefixSum[0] = array[0];
for (int i = 1; i < prefixSum.length; i++) {
prefixSum[i] = prefixSum[i - 1] + array[i];
}
int count = countInversion(prefixSum, 0, prefixSum.length - 1);
System.out.println(count); // 9
}
public static int countInversion(int[] prefixSum, int left, int right) {
// merge-sort like counting inversion in prefixSum array
if (left == right) {
if (prefixSum[left] < 0) {
return 1;
}
return 0;
}
int mid = (left + right) / 2;
int count_left = countInversion(prefixSum, left, mid);
int count_right = countInversion(prefixSum, mid + 1, right);
int count_cross = countCrossInversion(prefixSum, left, mid, right);
return count_left + count_right + count_cross;
}
public static int countCrossInversion(int[] prefixSum, int left, int mid, int right) {
List<Integer> L = new ArrayList<>();
for (int i = left; i <= mid; i++) {
L.add(prefixSum[i]);
}
L.add(Integer.MAX_VALUE);
List<Integer> R = new ArrayList<>();
for (int i = mid + 1; i <= right; i++) {
R.add(prefixSum[i]);
}
R.add(Integer.MAX_VALUE);
int count = 0;
int i = 0;
int j = 0;
for (int k = left; k <= right; k++) {
if (L.get(i) <= R.get(j)) {
prefixSum[k] = L.get(i);
i += 1;
} else {
prefixSum[k] = R.get(j);
count += L.size() - 1 - i; // size() counts additional sentinal MAX_VALUE
j += 1;
}
}
return count;
}
}