所以我正在开展一个机器人项目,我们必须识别墙上的图案并相应地定位我们的机器人。我在我的笔记本电脑上开发了这个图像处理代码,它抓取了一个图像,将其转换为HSV,应用了一个按位掩码,使用了Canny边缘检测,并找到了轮廓。我以为我可以将代码复制并粘贴到覆盆子pi 3上;然而,由于处理能力下降,fps小于1.我一直试图将代码分离成线程,所以我可以有一个捕获图像的线程,一个将图像转换为HSV并过滤它的线程,和一个线程做轮廓拟合。为了让这些人彼此沟通,我已经排队了。
这是我最初的愿景代码:
import numpy as np
import cv2
import time
import matplotlib.pyplot as plt
import sys
def onmouse(k, x, y, s, p):
global hsv
if k == 1: # left mouse, print pixel at x,y
print(hsv[y, x])
def distance_to_camera(Kwidth, focalLength, pixelWidth):
return (Kwidth * focalLength) / pixelWidth
def contourArea(contours):
area = []
for i in range(0,len(contours)):
area.append([cv2.contourArea(contours[i]),i])
area.sort()
if(area[len(area) - 1] >= 5 * area[0]):
return area[len(area)-1]
else: return 0
if __name__ == '__main__':
cap = cv2.VideoCapture(0)
"""
cap.set(3, 1920)
cap.set(4, 1080)
cap.set(5, 30)
time.sleep(2)
cap.set(15, -8.0)
"""
KNOWN_WIDTH = 18
# focalLength = focalLength = (rect[1][1] * 74) / 18
focalLength = 341.7075686984592
distance_data = []
counter1 = 0
numFrames = 100
samples = 1
start_time = time.time()
while (samples < numFrames):
# Capture frame-by-frame
ret, img = cap.read()
length1, width1, channels = img.shape
img = cv2.GaussianBlur(img, (5, 5), 0)
hsv = cv2.cvtColor(img.copy(), cv2.COLOR_BGR2HSV)
# lower_green = np.array([75, 200, 170])
# lower_green = np.array([53,180,122])
#lower_green = np.array([70, 120, 120])
lower_green = np.array([70, 50, 120])
upper_green = np.array([120, 200, 255])
#upper_green = np.array([120, 200, 255])
mask = cv2.inRange(hsv, lower_green, upper_green)
res = cv2.bitwise_and(hsv, hsv, mask=mask)
gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
edged = cv2.Canny(res, 35, 125)
im2, contours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
if (len(contours) > 1):
area,place = contourArea(contours)
#print(area)
if(area != 0):
# print("Contxours: %d" % contours.size())
# print("Hierarchy: %d" % hierarchy.size())
c = contours[place]
cv2.drawContours(img, c, -1, (0, 0, 255), 3)
cv2.drawContours(edged,c, -1, (255, 0, 0), 3)
perimeter = cv2.arcLength(c, True)
M = cv2.moments(c)
cx = 0
cy = 0
if (M['m00'] != 0):
cx = int(M['m10'] / M['m00']) # Center of MASS Coordinates
cy = int(M['m01'] / M['m00'])
rect = cv2.minAreaRect(c)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(img, [box], 0, (255, 0, 0), 2)
cv2.circle(img, (cx, cy), 7, (0, 0, 255), -1)
cv2.line(img, (int(width1 / 2), int(length1 / 2)), (cx, cy), (255, 0, 0), 2)
if(rect[1][1] != 0):
inches = distance_to_camera(KNOWN_WIDTH, focalLength, rect[1][1])
#print(inches)
distance_data.append(inches)
counter1+=1
samples+=1
"""
cv2.namedWindow("Image w Contours")
cv2.setMouseCallback("Image w Contours", onmouse)
cv2.imshow('Image w Contours', img)
cv2.namedWindow("HSV")
cv2.setMouseCallback("HSV", onmouse)
cv2.imshow('HSV', edged)
if cv2.waitKey(1) & 0xFF == ord('x'):
break
"""
# When everything done, release the capture
totTime = time.time() - start_time
print("--- %s seconds ---" % (totTime))
print('----%s fps ----' % (numFrames/totTime))
cap.release()
cv2.destroyAllWindows()
--- 13.469419717788696 seconds ---
----7.42422480665093 fps ----
plt.plot(distance_data)
plt.xlabel('TimeData')
plt.ylabel('Distance to Target(in) ')
plt.title('Distance vs Time From Camera')
plt.show()
这是我的线程代码,它在main中抓取帧并在另一个线程中过滤它;我想有另一个用于轮廓拟合的线程,但即使使用这两个进程,线程代码也具有与前一代码几乎相同的FPS。这些结果也来自我的笔记本电脑,而不是树莓派。
import cv2
import threading
import datetime
import numpy as np
import queue
import time
frame = queue.Queue(0)
canny = queue.Queue(0)
lower_green = np.array([70, 50, 120])
upper_green = np.array([120, 200, 255])
class FilterFrames(threading.Thread):
def __init__(self,threadID,lock):
threading.Thread.__init__(self)
self.lock = lock
self.name = threadID
self.setDaemon(True)
self.start()
def run(self):
while(True):
img1 = frame.get()
img1 = cv2.GaussianBlur(img1, (5, 5), 0)
hsv = cv2.cvtColor(img1.copy(), cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower_green, upper_green)
res = cv2.bitwise_and(hsv, hsv, mask=mask)
edged = cv2.Canny(res, 35, 125)
canny.put(edged)
if __name__ == '__main__':
lock = threading.Lock()
numframes = 100
frames = 0
cap = cv2.VideoCapture(0)
filter = FilterFrames(lock=lock, threadID='Filter')
start_time = time.time()
while(frames < numframes):
ret,img = cap.read()
frame.put(img)
frames+=1
totTime = time.time() - start_time
print("--- %s seconds ---" % (totTime))
print('----%s fps ----' % (numframes/totTime))
"""
Results were:
--- 13.590131759643555 seconds ---
----7.358280388197121 fps ----
"""
cap.release()
我想知道是否存在我做错的事情,队列的访问是否会降低代码速度,以及我是否应该使用多处理模块而不是线程化此应用程序。
答案 0 :(得分:1)
您可以使用cProfile
模块对代码进行分析。它会告诉你程序的哪个部分是瓶颈。
CPython实现中的Python具有全局解释器锁(GIL)。这意味着即使您的应用程序是多线程的,它也只会使用您的一个CPU。您可以尝试multiprocessing
模块。尽管Jython和IronPython没有GIL,但它们没有或没有稳定的Python3支持。
在您的代码中self.lock
从未使用过。使用带有pylint的好IDE来捕获这些错误。队列保持自己的锁定。
threading.Thread.__init__(self)
是一种来自Python2的过时语法。请改用super().__init__()