我第一次使用线程库,以加快我的SARIMAX模型的训练时间。但代码仍然失败,出现以下错误
Bad direction in the line search; refresh the lbfgs memory and restart the iteration.
This problem is unconstrained.
This problem is unconstrained.
This problem is unconstrained.
以下是我的代码:
import numpy as np
import pandas as pd
from statsmodels.tsa.arima_model import ARIMA
import statsmodels.tsa.api as smt
from threading import Thread
def process_id(ndata):
train = ndata[0:-7]
test = ndata[len(train):]
try:
model = smt.SARIMAX(train.asfreq(freq='1d'), exog=None, order=(0, 1, 1), seasonal_order=(0, 1, 1, 7)).fit()
pred = model.get_forecast(len(test))
fcst = pred.predicted_mean
fcst.index = test.index
mapelist = []
for i in range(len(fcst)):
mapelist.insert(i, (np.absolute(test[i] - fcst[i])) / test[i])
mape = np.mean(mapelist) * 100
print(mape)
except:
mape = 0
pass
return mape
def process_range(ndata, store=None):
if store is None:
store = {}
for id in ndata:
store[id] = process_id(ndata[id])
return store
def threaded_process_range(nthreads,ndata):
store = {}
threads = []
# create the threads
k = 0
tk = ndata.columns
for i in range(nthreads):
dk = tk[k:len(tk)/nthreads+k]
k = k+len(tk)/nthreads
t = Thread(target=process_range, args=(ndata[dk],store))
threads.append(t)
[ t.start() for t in threads ]
[ t.join() for t in threads ]
return store
outdata = threaded_process_range(4,ndata)
我想提几件事:
非常感谢任何见解,谢谢!
答案 0 :(得分:1)
我在使用lbfgs时遇到了同样的错误,我不确定为什么lbfgs不能进行梯度评估,但是我尝试更改优化器。您也可以尝试此方法,从这些优化器中选择
“牛顿”代表Newton-Raphson,“ nm”代表Nelder-Mead
“ Bfgs”代表Broyden-Fletcher-Goldfarb-Shanno(BFGS)
“ lbfgs”用于具有可选框约束的有限内存BFGS
“鲍威尔”以修改鲍威尔的方法
共轭梯度的“ cg”
“ ncg”表示牛顿共轭梯度
全球盆地跳跃求解器的“ basinhopping”
在您的代码中更改
model = smt.SARIMAX(train.asfreq(freq='1d'), exog=None, order=(0, 1, 1), seasonal_order=(0, 1, 1, 7)).fit(method='cg')
这是一个古老的问题,但我仍在回答,以防将来有人遇到相同的问题。