Boost :: Spirit:优化表达式解析器

时间:2016-10-02 18:32:56

标签: c++ parsing optimization boost-spirit

我试图编写一个程序来解析和评估数学,文本和布尔表达式,例如:

  • "(9/3)== 3 + 3 * 2"将被解析为"(9/3)==(3+(3 * 2))"并评估为" false"
  • " 1 + 2/3#34;将被解析为" 1+(2/3)"并评估为" 6"。
  • "这个+是+ a + test"将被解析为"此+是+ a + test"并评估为" thisisatest"

程序正确地解析并解决了我给出的内容,但是只要在括号中加上括号,解析就会花费大量的时间。

我的工作基于Sehe's impressively exhaustive answer关于如何编写布尔语法分析器的工作。我在这个例子之后添加了新的运算符(+, - ,/,*,==,!=)。

这是解析器

    // DEFINING TYPES
struct op_not {};
struct op_or {};
struct op_and {};
struct op_xor {};
struct op_equal {};
struct op_unequal {};
struct op_sum {};
struct op_difference {};
struct op_factor {};
struct op_division {};

typedef ustring var;
template <typename tag> struct binop;
template <typename tag> struct unop;

typedef boost::variant<var,
    boost::recursive_wrapper<unop <op_not> >,
    boost::recursive_wrapper<binop<op_equal> >,
    boost::recursive_wrapper<binop<op_unequal> >,
    boost::recursive_wrapper<binop<op_and> >,
    boost::recursive_wrapper<binop<op_xor> >,
    boost::recursive_wrapper<binop<op_or> >,
    boost::recursive_wrapper<binop<op_difference> >,
    boost::recursive_wrapper<binop<op_sum> >,
    boost::recursive_wrapper<binop<op_factor> >,
    boost::recursive_wrapper<binop<op_division> >
> expressionContainer;

template <typename tag> struct binop
{
    explicit binop(const expressionContainer& l
        , const expressionContainer& r)
        : oper1(l), oper2(r) { }
    expressionContainer oper1, oper2;
};

template <typename tag> struct unop
{
    explicit unop(const expressionContainer& o) : oper1(o) { }
    expressionContainer oper1;
};


    // EXPRESSION PARSER
template <typename It, typename Skipper = boost::spirit::standard_wide::space_type>
struct parserExpression : qi::grammar<It, expressionContainer(), Skipper>
{
    parserExpression() : parserExpression::base_type(expr_)
    {
        using namespace qi;

        expr_ = or_.alias();

        // Logical Operators
        or_ = (xor_ >> orOperator_ >> or_) [_val = boost::phoenix::construct<Expression::binop<op_or >>(_1, _3)]    | xor_[_val = _1];
        xor_ = (and_ >> xorOperator_ >> xor_) [_val = boost::phoenix::construct<Expression::binop<op_xor>>(_1, _3)]     | and_[_val = _1];
        and_ = (equal_ >> andOperator_ >> and_) [_val = boost::phoenix::construct<Expression::binop<op_and>>(_1, _3)]   | equal_[_val = _1];
        equal_ = (unequal_ >> equalOperator_ >> equal_) [_val = boost::phoenix::construct<Expression::binop<op_equal>>(_1, _3)] | unequal_[_val = _1];
        unequal_ = (factor_ >> unequalOperator_ >> unequal_) [_val = boost::phoenix::construct<Expression::binop<op_unequal>>(_1, _3)] | factor_[_val = _1];

        // Numerical Operators
        factor_ = (division_ >> factorOperator_ >> factor_) [_val = boost::phoenix::construct<Expression::binop<op_factor>>(_1, _3)] | division_[_val = _1];
        division_ = (sum_ >> divisionOperator_ >> division_) [_val = boost::phoenix::construct<Expression::binop<op_division>>(_1, _3)] | sum_[_val = _1];
        sum_ = (difference_ >> sumOperator_ >> sum_) [_val = boost::phoenix::construct<Expression::binop<op_sum>>(_1, _3)] | difference_[_val = _1];
        difference_ = (not_ >> differenceOperator_ >> difference_) [_val = boost::phoenix::construct<Expression::binop<op_difference>>(_1, _3)] | not_[_val = _1];

        // UNARY OPERATIONS
        not_ = (notOperator_ > simple) [_val = boost::phoenix::construct<Expression::unop <op_not>>(_2)] | simple[_val = _1];

        simple = (('(' > expr_ > ')') | var_);
        var_ = qi::lexeme[+alnum];

        notOperator_        = qi::char_('!');
        andOperator_        = qi::string("&&");
        orOperator_         = qi::string("||");
        xorOperator_        = qi::char_("^");
        equalOperator_      = qi::string("==");
        unequalOperator_    = qi::string("!=");
        sumOperator_        = qi::char_("+");
        differenceOperator_ = qi::char_("-");
        factorOperator_     = qi::char_("*");
        divisionOperator_   = qi::char_("/");

        /*BOOST_SPIRIT_DEBUG_NODE(expr_);
        BOOST_SPIRIT_DEBUG_NODE(or_);
        BOOST_SPIRIT_DEBUG_NODE(xor_);
        BOOST_SPIRIT_DEBUG_NODE(and_);
        BOOST_SPIRIT_DEBUG_NODE(not_);
        BOOST_SPIRIT_DEBUG_NODE(simple);
        BOOST_SPIRIT_DEBUG_NODE(var_);
        BOOST_SPIRIT_DEBUG_NODE(notOperator_);
        BOOST_SPIRIT_DEBUG_NODE(andOperator_);
        BOOST_SPIRIT_DEBUG_NODE(orOperator_);
        BOOST_SPIRIT_DEBUG_NODE(xorOperator_);
        BOOST_SPIRIT_DEBUG_NODE(sumOperator_);
        BOOST_SPIRIT_DEBUG_NODE(differenceOperator_);
        BOOST_SPIRIT_DEBUG_NODE(factorOperator_);
        BOOST_SPIRIT_DEBUG_NODE(divisionOperator_);*/
    }

private:
    qi::rule<It, var(), Skipper> var_;
    qi::rule<It, expressionContainer(), Skipper> not_
        , and_
        , xor_
        , or_
        , equal_
        , unequal_
        , sum_
        , difference_
        , factor_
        , division_
        , simple
        , expr_;

    qi::rule<It, ustring(), Skipper> notOperator_
        , andOperator_
        , orOperator_
        , xorOperator_
        , equalOperator_
        , unequalOperator_
        , sumOperator_
        , differenceOperator_
        , factorOperator_
        , divisionOperator_;
};

使用上面的代码,在我的电脑上(运行Intel I5 CPU):

  • 解析&#34; 1 + 2 - 3 * 4/5 == 6!= 7&amp;&amp; 8 || 9 ^ 8 * 7/6 ^ 5&amp;&amp; 4 || 3!= 2 == 1&#34;是瞬间的。
  • 解析&#34;(1)&#34;需要大约200毫秒

之前已经证明了Spirit的表现,我留下了一个明显的问题:我能改进什么?

1 个答案:

答案 0 :(得分:2)

你的问题是(1)是使用该语法进行回溯的最糟糕情况。让我们研究一个简化的例子:

or_ = (and_ >> '|' >> or_) | and_;
and_ = (not_ >> '&' >> and_) | not_;
not_ = ('!' >> simple_) | simple_;
simple_ = ('(' >> or_ >> ')') | var_;

这是一步一步的演练:

  • 我们尝试or_
    • 我们尝试and_
      • 我们尝试not_
        • 我们尝试'!''!' >> simple_失败
        • 我们尝试simple
          • 我们尝试'(',匹配
          • 我们尝试or_
            • 我们尝试and_
              • 我们尝试not_
                • 我们尝试'!''!' >> simple_失败
                • 我们尝试simple
                  • 我们尝试'(''(' >> or_ >> ')'失败
                  • 我们尝试var_,匹配
                • simple_ suceeds
              • not_ suceeds
              • 我们尝试'&'not_ >> '&' >> and_失败(之前的simple_not_匹配将被丢弃)
              • 我们尝试not_(独自一个)
                • 以前的一切
              • not_成功
            • and_成功
            • 我们尝试'|'and_ >> '|' >> or_失败(and_not_simple_匹配已弃用)
            • 我们尝试and_(仅此一个)
              • 以前的一切
            • and_成功
          • or_成功
          • 我们尝试')''(' >> or_ >> ')'成功
        • simple_成功
      • not_成功
      • 我们尝试'&'not_ >> '&' >> and_失败(一切都被丢弃)
      • 我们尝试not_(仅此一个)
        • 以前的一切
      • not_ suceeds
    • and_ suceeds
    • 我们尝试'|'and_ >> '|' >> or_失败(一切都被丢弃)
    • 我们尝试and_(仅此一个)
      • 以前的一切
    • and_成功
  • or_成功

只有两个二进制规则,你的情况要糟糕得多。

你可以使用类似的东西:

or_ = and_[_val=_1] >> -( '|' >> or_ )[_val=construct<binop<op_or> >(_val,_1)]; 

并且,虽然比以前更加丑陋,但它不会丢弃任何比赛。

如果你注意到,我不认识你的一个问题是解析的结果是右关联的(意思是3-2-1 =&gt; 3-(2-1))。我认为这样的事情:

or_ = and_[_val=_1] >> *( '|' >> and_)[_val=construct<binop<op_or> >(_val,_1)]; //note the `and_` instead of `or_` after '|'

可以解决问题,但我还没有测试过。

另外,由于您安排规则的方式,您+-的优先级高于*/

尝试解决这些问题(以及删除语义操作)我想出了一个似乎有效的自定义指令,你会像这样使用它:

or_ = fold<binop<op_or> >(xor_.alias())['|' >> xor_]; //sadly the `.alias()` is required

该指令解析初始解析器(xor_.alias())并多次尝试主题。如果主题永远不会成功,则最终属性是初始解析器的属性。如果主题成功,则最终属性为binop<op_or>(initial_attr,subject_attr) / binop<op_or>(binop<op_or>(initial_attr,subject_attr1),subject_attr2) / ...

完整示例(Running on WandBox)

<强> custom_fold_directive.hpp

namespace custom
{
    namespace tag
    {
        struct fold { BOOST_SPIRIT_IS_TAG() };
    }

    template <typename Exposed, typename Expr>
    boost::spirit::stateful_tag_type<Expr, tag::fold, Exposed>
    fold(Expr const& expr)
    {
        return boost::spirit::stateful_tag_type<Expr, tag::fold, Exposed>(expr);
    }

}

namespace boost { namespace spirit 
{
    template <typename Expr, typename Exposed>
    struct use_directive<qi::domain
          , tag::stateful_tag<Expr, custom::tag::fold, Exposed> >
      : mpl::true_ {};
}}

namespace custom
{
    template <typename Exposed, typename InitialParser, typename RepeatingParser>
    struct fold_directive
    {
        fold_directive(InitialParser const& initial, RepeatingParser const& repeating):initial(initial),repeating(repeating){}

        template <typename Context, typename Iterator>
        struct attribute
        {
            typedef typename boost::spirit::traits::attribute_of<InitialParser,Context,Iterator>::type type;//This works in this case but is not generic
        };

        template <typename Iterator, typename Context
          , typename Skipper, typename Attribute>
        bool parse(Iterator& first, Iterator const& last
          , Context& context, Skipper const& skipper, Attribute& attr_) const
        {
            Iterator start = first;

            typename boost::spirit::traits::attribute_of<InitialParser,Context,Iterator>::type initial_attr;


            if (!initial.parse(first, last, context, skipper, initial_attr))
            {
                first=start;
                return false;
            }

            typename boost::spirit::traits::attribute_of<RepeatingParser,Context,Iterator>::type repeating_attr;

            if(!repeating.parse(first, last, context, skipper, repeating_attr))
            {
                boost::spirit::traits::assign_to(initial_attr, attr_);
                return true;
            }
            Exposed current_attr(initial_attr,repeating_attr);

            while(repeating.parse(first, last, context, skipper, repeating_attr))
            {
                boost::spirit::traits::assign_to(Exposed(current_attr,repeating_attr),current_attr);
            }
            boost::spirit::traits::assign_to(current_attr,attr_);
            return true;
        }

        template <typename Context>
        boost::spirit::info what(Context& context) const
        {
            return boost::spirit::info("fold");
        }

        InitialParser initial;
        RepeatingParser repeating;
    };
}

namespace boost { namespace spirit { namespace qi
{
    template <typename Expr, typename Exposed, typename Subject, typename Modifiers>
    struct make_directive<
        tag::stateful_tag<Expr, custom::tag::fold, Exposed>, Subject, Modifiers>
    {
        typedef custom::fold_directive<Exposed, Expr, Subject> result_type;

        template <typename Terminal>
        result_type operator()(Terminal const& term, Subject const& subject, Modifiers const&) const
        {
            typedef tag::stateful_tag<
                Expr, custom::tag::fold, Exposed> tag_type;
            using spirit::detail::get_stateful_data;

            return result_type(get_stateful_data<tag_type>::call(term),subject);
        }
    };
}}}

<强>的main.cpp

//#define BOOST_SPIRIT_DEBUG
#include <iostream>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include "custom_fold_directive.hpp"

namespace qi = boost::spirit::qi;


// DEFINING TYPES
struct op_not {};
struct op_or {};
struct op_and {};
struct op_xor {};
struct op_equal {};
struct op_unequal {};
struct op_sum {};
struct op_difference {};
struct op_factor {};
struct op_division {};

namespace Expression{

typedef std::string var;
template <typename tag> struct binop;
template <typename tag> struct unop;

typedef boost::variant<var,
    boost::recursive_wrapper<unop <op_not> >,
    boost::recursive_wrapper<binop<op_equal> >,
    boost::recursive_wrapper<binop<op_unequal> >,
    boost::recursive_wrapper<binop<op_and> >,
    boost::recursive_wrapper<binop<op_xor> >,
    boost::recursive_wrapper<binop<op_or> >,
    boost::recursive_wrapper<binop<op_difference> >,
    boost::recursive_wrapper<binop<op_sum> >,
    boost::recursive_wrapper<binop<op_factor> >,
    boost::recursive_wrapper<binop<op_division> >
> expressionContainer;


template <typename tag> struct binop
{
    explicit binop(const expressionContainer& l
        , const expressionContainer& r)
        : oper1(l), oper2(r) { }
    expressionContainer oper1, oper2;

    friend std::ostream& operator<<(std::ostream& os, const binop& val)
    {
        os << "(" << typeid(tag).name() << " " << val.oper1 << ", "<< val.oper2 << ")";
        return os;
    }
};

template <typename tag> struct unop
{
    explicit unop(const expressionContainer& o) : oper1(o) { }
    expressionContainer oper1;

    friend std::ostream& operator<<(std::ostream& os, const unop& val)
    {
        os << "(" << typeid(tag).name() << " " << val.oper1 << ")";
        return os;
    }
};

}

    // EXPRESSION PARSER
template <typename It, typename Skipper = boost::spirit::standard_wide::space_type>
struct parserExpression : qi::grammar<It, Expression::expressionContainer(), Skipper>
{
    parserExpression() : parserExpression::base_type(expr_)
    {
        using namespace qi;
        using namespace Expression;
        using custom::fold;

        expr_ = or_.alias();

        // Logical Operators
        or_ = fold<binop<op_or> >(xor_.alias())[orOperator_ >> xor_];
        xor_ = fold<binop<op_xor> >(and_.alias())[xorOperator_ >> and_];
        and_ = fold<binop<op_and> >(equal_.alias())[andOperator_ >> equal_];
        equal_ = fold<binop<op_equal> >(unequal_.alias())[equalOperator_ >> unequal_]; 
        unequal_ = fold<binop<op_unequal> >(sum_.alias())[unequalOperator_ >> sum_];

        // Numerical Operators
        sum_ = fold<binop<op_sum> >(difference_.alias())[sumOperator_ >> difference_];
        difference_ = fold<binop<op_difference> >(factor_.alias())[differenceOperator_ >> factor_];
        factor_ = fold<binop<op_factor> >(division_.alias())[factorOperator_ >> division_]; 
        division_ = fold<binop<op_division> >(not_.alias())[divisionOperator_ >> not_];

        // UNARY OPERATIONS
        not_ = (notOperator_ > simple) [_val = boost::phoenix::construct<Expression::unop <op_not>>(_1)] | simple[_val = _1];

        simple = (('(' > expr_ > ')') | var_);
        var_ = qi::lexeme[+alnum];

        notOperator_        = qi::char_('!');
        andOperator_        = qi::string("&&");
        orOperator_         = qi::string("||");
        xorOperator_        = qi::char_("^");
        equalOperator_      = qi::string("==");
        unequalOperator_    = qi::string("!=");
        sumOperator_        = qi::char_("+");
        differenceOperator_ = qi::char_("-");
        factorOperator_     = qi::char_("*");
        divisionOperator_   = qi::char_("/");

        BOOST_SPIRIT_DEBUG_NODES((expr_)(or_)(xor_)(and_)(equal_)(unequal_)(sum_)(difference_)(factor_)(division_)(simple)(notOperator_)
                                 (andOperator_)(orOperator_)(xorOperator_)(equalOperator_)(unequalOperator_)(sumOperator_)(differenceOperator_)(factorOperator_)(divisionOperator_));

    }

private:
    qi::rule<It, Expression::var(), Skipper> var_;
    qi::rule<It, Expression::expressionContainer(), Skipper> not_
        , and_
        , xor_
        , or_
        , equal_
        , unequal_
        , sum_
        , difference_
        , factor_
        , division_
        , simple
        , expr_;

    qi::rule<It, Skipper> notOperator_
        , andOperator_
        , orOperator_
        , xorOperator_
        , equalOperator_
        , unequalOperator_
        , sumOperator_
        , differenceOperator_
        , factorOperator_
        , divisionOperator_;
};

void parse(const std::string& str)
{
    std::string::const_iterator iter = str.begin(), end = str.end();

    parserExpression<std::string::const_iterator,qi::space_type> parser;
    Expression::expressionContainer expr;

    bool result = qi::phrase_parse(iter,end,parser,qi::space, expr);

    if(result && iter==end)
    {
        std::cout << "Success." << std::endl;
        std::cout << str << " => " << expr << std::endl;
    }
    else
    {
        std::cout << "Failure." << std::endl;
    }
}

int main()
{
    parse("(1)");
    parse("3-2-1");
    parse("a+b*c");
    parse("a*b+c");
    parse("(a+b)*c");
    parse("a*b+c*(d+e)&&true||false");
}