Cuda,CuDNN安装但是Tensorflow无法使用GPU

时间:2016-10-02 13:46:33

标签: ubuntu tensorflow gpu cudnn

我的系统是EC2上的Ubuntu 14.04。:

nvidia-smi
Sun Oct  2 13:35:28 2016       
+------------------------------------------------------+                       
| NVIDIA-SMI 352.63     Driver Version: 352.63         |                       
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GRID K520           Off  | 0000:00:03.0     Off |                  N/A |
| N/A   37C    P0    35W / 125W |     11MiB /  4095MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
ubuntu@ip-XXX-XX-XX-990:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2015 NVIDIA Corporation
Built on Tue_Aug_11_14:27:32_CDT_2015
Cuda compilation tools, release 7.5, V7.5.17

我安装了CUDA 7.5和CuDNN 5.1。

我在/ usr / local / local / lib64中有适当的文件并包含文件夹。

Tensorflow系列没有任何内容:

    sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
Device mapping: no known devices.
I tensorflow/core/common_runtime/direct_session.cc:252] Device mapping:

>>> 

请帮忙(非常感谢:))。

1 个答案:

答案 0 :(得分:2)

你是如何构建张量流的?

如果你用bazel做了,你是否正确添加了--config = cuda?

如果你用pip安装它,你是否正确使用了gpu enable?

编辑:

你可以在这里看到如何用pip安装: https://www.tensorflow.org/versions/r0.11/get_started/os_setup.html#pip-installation

您需要使用与gpu兼容的二进制文件:

# Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
# Requires CUDA toolkit 7.5 and CuDNN v5. For other versions, see "Install from sources" below.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0rc0-cp27-none-linux_x86_64.whl

# Mac OS X, GPU enabled, Python 2.7:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.11.0rc0-py2-none-any.whl

# Ubuntu/Linux 64-bit, GPU enabled, Python 3.4
# Requires CUDA toolkit 7.5 and CuDNN v5. For other versions, see "Install from sources" below.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0rc0-cp34-cp34m-linux_x86_64.whl

# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
# Requires CUDA toolkit 7.5 and CuDNN v5. For other versions, see "Install from sources" below.
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0rc0-cp35-cp35m-linux_x86_64.whl

# Mac OS X, GPU enabled, Python 3.4 or 3.5:
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.11.0rc0-py3-none-any.whl

然后安装tensorflow:

# Python 2
$ sudo pip install --upgrade $TF_BINARY_URL

# Python 3
$ sudo pip3 install --upgrade $TF_BINARY_URL