我在测试神经网络初始v3和Tensorflow时遇到错误。
我用Python以这种方式激活和训练了模型:
source tf_files/tensorflow/bin/activate
python tf_files/tensorflow/examples/image_retraining/retrain.py --bottleneck_dir=tf_files/bottlenecks --how_many_training_steps 500 --model_dir=tf_files/inception --output_graph=tf_files/retrained_graph.pb --output_labels=tf_files/retrained_labels.txt --image_dir tf_files/data
这给了我以下错误:
CRITICAL:tensorflow:标签kiwi在类别测试中没有图像。
Kiwi
是包含图片的文件夹。另一个名为Apples
的文件夹没有给我任何错误。但也许它发生,因为它包含少于20个图像。并且它不会创建名为retrained_labels.txt
的文件。
因此,当执行以下命令时,它会给我一个错误,说它无法找到该文件,如上所述。
python image_label.py apple.jpg
所有内容都在其中,image_label.py
的内容为:
import tensorflow as tf
import sys
# change this as you see fit
image_path = sys.argv[1]
# Read in the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("tf_files/retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("tf_files/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
答案 0 :(得分:0)
我解决了。错误发生因为文件夹没有足够的图像来训练。因此,在将图像数量从14增加到38后,它给出了预测!