神经网络初始v3不会创建标签

时间:2016-09-30 07:49:12

标签: python neural-network tensorflow

我在测试神经网络初始v3和Tensorflow时遇到错误。

我用Python以这种方式激活和训练了模型:

source tf_files/tensorflow/bin/activate
python tf_files/tensorflow/examples/image_retraining/retrain.py --bottleneck_dir=tf_files/bottlenecks --how_many_training_steps 500 --model_dir=tf_files/inception --output_graph=tf_files/retrained_graph.pb --output_labels=tf_files/retrained_labels.txt --image_dir tf_files/data

这给了我以下错误:

  

CRITICAL:tensorflow:标签kiwi在类别测试中没有图像。

Kiwi是包含图片的文件夹。另一个名为Apples的文件夹没有给我任何错误。但也许它发生,因为它包含少于20个图像。并且它不会创建名为retrained_labels.txt的文件。

因此,当执行以下命令时,它会给我一个错误,说它无法找到该文件,如上所述。

python image_label.py apple.jpg

所有内容都在其中,image_label.py的内容为:

import tensorflow as tf
import sys

# change this as you see fit
image_path = sys.argv[1]

# Read in the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()

# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line 
               in tf.gfile.GFile("tf_files/retrained_labels.txt")]

# Unpersists graph from file
with tf.gfile.FastGFile("tf_files/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')

with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')

predictions = sess.run(softmax_tensor, \
         {'DecodeJpeg/contents:0': image_data})

# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]

for node_id in top_k:
    human_string = label_lines[node_id]
    score = predictions[0][node_id]
    print('%s (score = %.5f)' % (human_string, score))

1 个答案:

答案 0 :(得分:0)

我解决了。错误发生因为文件夹没有足够的图像来训练。因此,在将图像数量从14增加到38后,它给出了预测!