将前缀添加到Dataframe的特定列

时间:2016-09-29 14:20:08

标签: python pandas

我是这样的DataFrame:

col1   col2   col3   col4   col5   col6   col7   col8
0      5345   rrf    rrf    rrf    rrf    rrf    rrf
1      2527   erfr   erfr   erfr   erfr   erfr   erfr
2      2727   f      f      f      f      f      f

我想重命名所有列,但不是 col1 col2

所以我试着制作一个循环

print(df.columns)
    for col in df.columns:
        if col != 'col1' and col != 'col2':
            col.rename = str(col) + '_x'

但它效率不高......它不起作用!

3 个答案:

答案 0 :(得分:13)

您可以使用DataFrame.rename()方法

new_names = [(i,i+'_x') for i in df.iloc[:, 2:].columns.values]
df.rename(columns = dict(new_names), inplace=True)

答案 1 :(得分:4)

如果col1col2是第一和第二列名称,则是最简单的解决方案:

df.columns = df.columns[:2].union(df.columns[2:]  + '_x')
print (df)
   col1  col2 col3_x col4_x col5_x col6_x col7_x col8_x
0     0  5345    rrf    rrf    rrf    rrf    rrf    rrf
1     1  2527   erfr   erfr   erfr   erfr   erfr   erfr
2     2  2727      f      f      f      f      f      f

isin或列表理解的另一种解决方案:

cols = df.columns[~df.columns.isin(['col1','col2'])]
print (cols)
['col3', 'col4', 'col5', 'col6', 'col7', 'col8']

df.rename(columns = dict(zip(cols, cols + '_x')), inplace=True)

print (df)

   col1  col2 col3_x col4_x col5_x col6_x col7_x col8_x
0     0  5345    rrf    rrf    rrf    rrf    rrf    rrf
1     1  2527   erfr   erfr   erfr   erfr   erfr   erfr
2     2  2727      f      f      f      f      f      f
cols = [col for col in df.columns if col not in ['col1', 'col2']]
print (cols)
['col3', 'col4', 'col5', 'col6', 'col7', 'col8']

df.rename(columns = dict(zip(cols, cols + '_x')), inplace=True)

print (df)

   col1  col2 col3_x col4_x col5_x col6_x col7_x col8_x
0     0  5345    rrf    rrf    rrf    rrf    rrf    rrf
1     1  2527   erfr   erfr   erfr   erfr   erfr   erfr
2     2  2727      f      f      f      f      f      f

最快的是列表理解:

df.columns = [col+'_x' if col != 'col1' and col != 'col2' else col for col in df.columns]

<强>计时

In [350]: %timeit (akot(df))
1000 loops, best of 3: 387 µs per loop

In [351]: %timeit (jez(df1))
The slowest run took 4.12 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 207 µs per loop

In [363]: %timeit (jez3(df2))
The slowest run took 6.41 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 75.7 µs per loop
df1 = df.copy()
df2 = df.copy()

def jez(df):
    df.columns = df.columns[:2].union(df.columns[2:]  + '_x')
    return df

def akot(df):
    new_names = [(i,i+'_x') for i in df.iloc[:, 2:].columns.values]
    df.rename(columns = dict(new_names), inplace=True)
    return df


def jez3(df):
   df.columns = [col + '_x' if col != 'col1' and col != 'col2' else col for col in df.columns]
   return df


print (akot(df))
print (jez(df1))
print (jez2(df1))

答案 2 :(得分:3)

您可以使用带有正则表达式模式的str.contains来过滤感兴趣的cols,然后使用zip构建一个dict并将其作为arg传递给rename

In [94]:
cols = df.columns[~df.columns.str.contains('col1|col2')]
df.rename(columns = dict(zip(cols, cols + '_x')), inplace=True)
df

Out[94]:
   col1  col2 col3_x col4_x col5_x col6_x col7_x col8_x
0     0  5345    rrf    rrf    rrf    rrf    rrf    rrf
1     1  2527   erfr   erfr   erfr   erfr   erfr   erfr
2     2  2727      f      f      f      f      f      f

因此,使用str.contains过滤列会返回不匹配的列,因此列顺序无关紧要