枚举具有相同前缀的列

时间:2019-07-01 17:16:23

标签: python pandas dataframe

假设我们有以下简化数据:

df = pd.DataFrame({'A':list('abcd'),
                   'B':list('efgh'),
                   'Data_mean':[1,2,3,4],
                   'Data_std':[5,6,7,8],
                   'Data_corr':[9,10,11,12],
                   'Text_one':['foo', 'bar', 'foobar', 'barfoo'],
                   'Text_two':['bar', 'foo', 'barfoo', 'foobar'],
                   'Text_three':['bar', 'bar', 'barbar', 'foofoo']})

   A  B  Data_mean  Data_std  Data_corr Text_one Text_two Text_three
0  a  e          1         5          9      foo      bar        bar
1  b  f          2         6         10      bar      foo        bar
2  c  g          3         7         11   foobar   barfoo     barbar
3  d  h          4         8         12   barfoo   foobar     foofoo

我想枚举具有相同前缀的列。在这种情况下,前缀为Data, Text。因此,预期的输出将是:

   A  B  Data_mean1  Data_std2  Data_corr3 Text_one1 Text_two2 Text_three3
0  a  e           1          5           9       foo       bar         bar
1  b  f           2          6          10       bar       foo         bar
2  c  g           3          7          11    foobar    barfoo      barbar
3  d  h           4          8          12    barfoo    foobar      foofoo

请注意列举的列。


尝试解决方案1 ​​

def enumerate_cols(dataframe, prefix):
    cols = []
    num = 1
    for col in dataframe.columns:
        if col.startswith(prefix):
            cols.append(col + str(num))
            num += 1
        else:
            cols.append(col)

    return cols
enumerate_cols(df, 'Data')

['A',
 'B',
 'Data_mean1',
 'Data_std2',
 'Data_corr3',
 'Text_one',
 'Text_two',
 'Text_three']

尝试的解决方案2:

[c+str(x+1) for x, c in enumerate([col for col in df.columns if col.startswith('Data')])]
['Data_mean1', 'Data_std2', 'Data_corr3']

问题:是否有更简单的解决方案,我也查看了df.filter(like='Data')等。但这看起来也很牵强。


XY问题
只要确定我没有陷入XY problem。我想使用pd.wide_to_long,但是stubnames列需要加一个数字后缀才能融化数据框。

从文档中引用:

  

具有存根名称['A','B']的情况下,此函数希望查找一组或多组格式为A-后缀1,A-后缀2,…,B-后缀1,B-后缀2,

的列
pd.wide_to_long(df, stubnames=['Data', 'Text'], i=['A', 'B'], j='grp', sep='_')

这将返回一个空的数据框。

4 个答案:

答案 0 :(得分:2)

想法是将具有相同前缀的列分组,并为它们建立一个累加器。

由于我们需要分别处理不带前缀的列,因此需要使用private void OnGenerate(object sender, EventArgs e) { MessagingCenter.Subscribe<App, string>(App.Current, "OpenPage", (snd, arg) => { Device.BeginInvokeOnMainThread(() => { tagLabel.Text = arg; }); }); } GroupBy.cumcount分两步进行:

np.where

cols = df.columns.str.split('_').str[0].to_series()

df.columns = np.where(
    cols.groupby(level=0).transform('count') > 1, 
    cols.groupby(level=0).cumcount().add(1).astype(str).radd(df.columns), 
    cols
)

一个更简单的解决方案是将您不想添加后缀的列设置为索引。那你就可以做

df
   A  B  Data_mean1  Data_std2  Data_corr3 Text_one1 Text_two2 Text_three3
0  a  e           1          5           9       foo       bar         bar
1  b  f           2          6          10       bar       foo         bar
2  c  g           3          7          11    foobar    barfoo      barbar
3  d  h           4          8          12    barfoo    foobar      foofoo

答案 1 :(得分:1)

您还可以使用defaultdict为每个前缀创建一个计数器。

from collections import defaultdict

prefix_starting_location = 2
columns = df.columns[prefix_starting_location:]
prefixes = set(col.split('_')[0] for col in columns)

new_cols = []
dd = defaultdict(int)
for col in columns:
    prefix = col.split('_')[0]
    dd[prefix] += 1
    new_cols.append(col + str(dd[prefix]))
df.columns = df.columns[:prefix_starting_location].tolist() + new_cols
>>> df
   A  B  Data_mean1  Data_std2  Data_corr3 Text_one1 Text_two2 Text_three3
0  a  e           1          5           9       foo       bar         bar
1  b  f           2          6          10       bar       foo         bar
2  c  g           3          7          11    foobar    barfoo      barbar
3  d  h           4          8          12    barfoo    foobar      foofoo
​

如果前缀已知:

prefixes = ['Data', 'Text']
new_cols = []
dd = defaultdict(int)
for col in df.columns:
    prefix = col.split('_')[0]
    if prefix in prefixes:
        dd[prefix] += 1
        new_cols.append(col + str(dd[prefix]))
    else:
        new_cols.append(col)

如果您的拆分字符_不在您的任何数据字段中:

new_cols = []
dd = defaultdict(int)
for col in df.columns:
    if '_' in col:
        prefix = col.split('_')[0]
        dd[prefix] += 1
        new_cols.append(col + str(dd[prefix]))
    else:
        new_cols.append(col)

df.columns = new_cols

答案 2 :(得分:1)

您可以使用rename,例如:

l_word = ['Data','Text']
df = df.rename(columns={ col:col+str(i+1) 
                         for word in l_word 
                         for i, col in enumerate(df.filter(like=word))})

答案 3 :(得分:1)

根据我们的对话,方法melt

s=df.melt(['A','B']).assign(x=lambda x : x.groupby(x.variable.str.split('_').str[0]).cumcount(),y=lambda x : x.variable.str.split('_').str[0]) 

# after this the problem became a pivot problem 
pd.crosstab([s.A,s.B,s.x],columns=s.y,values=s.value,aggfunc='sum')
y      Data    Text
A B x              
a e 0     1     foo
    4     5     bar
    8     9     bar
b f 1     2     bar
    5     6     foo
    9    10     bar
c g 2     3  foobar
    6     7  barfoo
    10   11  barbar
d h 3     4  barfoo
    7     8  foobar
    11   12  foofoo