装袋包装似乎给出了奇怪的结果。如果我将它应用于一个简单的逻辑回归,那么logloss就会增加10倍:
library(mlbench)
library(mlr)
data(PimaIndiansDiabetes)
trainTask1 <- makeClassifTask(data = PimaIndiansDiabetes,target = "diabetes",positive = "pos")
bagged.lrn = makeBaggingWrapper(makeLearner("classif.logreg"), bw.iters = 10, bw.replace = TRUE, bw.size = 0.8, bw.feats = 1)
bagged.lrn = setPredictType(bagged.lrn,"prob")
non.bagged.lrn = setPredictType(makeLearner("classif.logreg"),"prob")
rdesc = makeResampleDesc("CV", iters = 5L)
resample(learner = non.bagged.lrn, task = trainTask1, resampling = rdesc, show.info = FALSE,measures = logloss)
resample(learner = bagged.lrn, task = trainTask1, resampling = rdesc, show.info = FALSE,measures = logloss)
给出
Resample Result
Task: PimaIndiansDiabetes
Learner: classif.logreg
logloss.aggr: 0.49
logloss.mean: 0.49
logloss.sd: 0.02
Runtime: 0.0699999
为第一个学习者和
Resample Result
Task: PimaIndiansDiabetes
Learner: classif.logreg.bagged
logloss.aggr: 5.41
logloss.mean: 5.41
logloss.sd: 0.80
运行时间:0.645
为袋装的。因此,袋装的性能要差得多。 是否有错误或我做错了什么?
这是我的sessionInfo()
R version 3.3.1 (2016-06-21)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mlr_2.9 stringi_1.1.1 ParamHelpers_1.8 ggplot2_2.1.0 BBmisc_1.10 mlbench_2.1-1
loaded via a namespace (and not attached):
[1] Rcpp_0.12.6 magrittr_1.5 splines_3.3.1 munsell_0.4.3 lattice_0.20-33 xtable_1.8-2 colorspace_1.2-6
[8] R6_2.1.2 plyr_1.8.4 dplyr_0.5.0 tools_3.3.1 parallel_3.3.1 grid_3.3.1 checkmate_1.8.1
[15] data.table_1.9.6 gtable_0.2.0 DBI_0.4-1 htmltools_0.3.5 ggvis_0.4.3 survival_2.39-4 assertthat_0.1
[22] digest_0.6.9 tibble_1.1 Matrix_1.2-6 shiny_0.13.2 mime_0.5 parallelMap_1.3 scales_0.4.0
[29] backports_1.0.3 httpuv_1.3.3 chron_2.3-47
答案 0 :(得分:3)
这个结果没有什么不妥,但可以更好地指定套袋模型。
Bagging并不一定能为您提供更好的性能统计数据,而是帮助您避免过度拟合并提高准确性。
因此,您的非装袋模型具有更好的性能统计数据的原因可能仅仅是它过度拟合或以其他方式产生具有误导性能统计数据的更偏向的结果。
然而,这是一个大大改进的套袋模型规格,使平均木材减少了70%:
foreach (DataRow row in dt.Rows)
{
lbl_cliente_codigo.Text = row[0].ToString()
// or
lbl_cliente_codigo.Text = row["Column Name"].ToString()
}
关键结果是
pacman::p_load(mlbench,mlr) data(PimaIndiansDiabetes) set.seed(1) trainTask1 <- makeClassifTask(data = PimaIndiansDiabetes,target = "diabetes",positive = "pos") bagged.lrn = makeBaggingWrapper(makeLearner("classif.logreg"), bw.iters = 100, bw.replace = TRUE, bw.size = .6, bw.feats = .5) bagged.lrn = setPredictType(bagged.lrn,"prob") non.bagged.lrn = setPredictType(makeLearner("classif.logreg"),"prob") rdesc = makeResampleDesc("CV", iters = 10L) resample(learner = non.bagged.lrn, task = trainTask1, resampling = rdesc, show.info = T, measures = logloss) resample(learner = bagged.lrn, task = trainTask1, resampling = rdesc, show.info = T, measures = logloss)