从skimage轮廓创建蒙版

时间:2016-09-22 15:07:26

标签: python contour scikit-image masked-array

我有一张图像,我用skimage.measure.find_contours()找到了轮廓,但现在我想为完全在最大闭合轮廓之外的像素创建一个遮罩。知道怎么做吗?

修改文档中的示例:

import numpy as np
import matplotlib.pyplot as plt
from skimage import measure

# Construct some test data
x, y = np.ogrid[-np.pi:np.pi:100j, -np.pi:np.pi:100j]
r = np.sin(np.exp((np.sin(x)**2 + np.cos(y)**2)))

# Find contours at a constant value of 0.8
contours = measure.find_contours(r, 0.8)

# Select the largest contiguous contour
contour = sorted(contours, key=lambda x: len(x))[-1]

# Display the image and plot the contour
fig, ax = plt.subplots()
ax.imshow(r, interpolation='nearest', cmap=plt.cm.gray)
X, Y = ax.get_xlim(), ax.get_ylim()
ax.step(contour.T[1], contour.T[0], linewidth=2, c='r')
ax.set_xlim(X), ax.set_ylim(Y)
plt.show()

这是红色的轮廓:

enter image description here

但如果放大,请注意轮廓不是像素的分辨率。

enter image description here

如何创建与原始图像尺寸相同的图像,其中像素完全在外面(即未被轮廓线交叉)遮盖? E.g。

from numpy import ma
masked_image = ma.array(r.copy(), mask=False)
masked_image.mask[pixels_outside_contour] = True

谢谢!

3 个答案:

答案 0 :(得分:1)

好的,我可以通过将轮廓转换为路径然后选择里面的像素来完成这项工作:

# Convert the contour into a closed path
from matplotlib import path
closed_path = path.Path(contour.T)

# Get the points that lie within the closed path
idx = np.array([[(i,j) for i in range(r.shape[0])] for j in range(r.shape[1])]).reshape(np.prod(r.shape),2)
mask = closed_path.contains_points(idx).reshape(r.shape)

# Invert the mask and apply to the image
mask = np.invert(mask)
masked_data = ma.array(r.copy(), mask=mask)

然而,这是一种缓慢测试N = r.shape[0]*r.shape[1]像素的缓慢控制。任何人都有更快的算法?谢谢!

答案 1 :(得分:1)

有点晚,但是你知道这句话。这就是我要完成的方法。

import scipy.ndimage as ndimage    

# Create an empty image to store the masked array
r_mask = np.zeros_like(r, dtype='bool')

# Create a contour image by using the contour coordinates rounded to their nearest integer value
r_mask[np.round(contour[:, 0]).astype('int'), np.round(contour[:, 1]).astype('int')] = 1

# Fill in the hole created by the contour boundary
r_mask = ndimage.binary_fill_holes(r_mask)

# Invert the mask since you want pixels outside of the region
r_mask = ~r_mask

enter image description here

答案 2 :(得分:1)

如果您仍在寻找更快的方法来实现这一目标,我建议您使用 skimage.draw.polygon ,这是我的新手,但它似乎已内置完全按照您要完成的任务进行操作:

import numpy as np
from skimage.draw import polygon

# fill polygon
poly = np.array((
    (300, 300),
    (480, 320),
    (380, 430),
    (220, 590),
    (300, 300),
))
rr, cc = polygon(poly[:, 0], poly[:, 1], img.shape)
img[rr, cc, 1] = 1

因此,在您的情况下,“闭合轮廓”是“多边形”,我们正在创建空白图像,轮廓形状的值填充为1:

mask = np.zeros(r.shape)
rr, cc = polygon(contour[:, 0], contour[:, 1], mask.shape)
mask[rr, cc] = 1

现在您可以将蒙版应用于原始图像,以遮盖轮廓之外的所有内容:

masked = ma.array(r.copy(), mask=mask)

记录在scikit image - Shapes