我正在研究两个相对较小的时间序列之间的交叉关联,但在努力实现我遇到的问题我无法自我调和。首先,我了解plt.xcorr
和np.correlate
之间的依赖关系。但是,我无法协调零滞后plt.xcorr
与np.corrcoef
之间的差异?
a = np.array([ 7.35846410e+08, 8.96271634e+08, 6.16249222e+08,
8.00739868e+08, 1.06116376e+09, 9.05690167e+08,
6.31383600e+08])
b = np.array([ 1.95621617e+09, 2.06263134e+09, 2.27717015e+09,
2.27281916e+09, 2.71090116e+09, 2.84676385e+09,
3.19578883e+09])
np.corrcoef(a,b)
# returns:
array([[ 1. , 0.02099573],
[ 0.02099573, 1. ]])
plt.xcorr(a,b,normed=True, maxlags=1)
# returns:
array([-1, 0, 1]),
array([ 0.90510941, 0.97024415, 0.79874158])
我希望这些返回相同的结果。我显然不明白plt.xcorr
是如何规范的,有人可以请我直截了当吗?
答案 0 :(得分:1)
标准" Pearson积矩相关系数的计算"使用样本,移动平均值。
互相关系数不使用归一化样本。
除此之外,计算是类似的。但这些系数仍有不同的公式和不同的含义。只有当样本a
和b
的平均值等于0
时,它们才相等(如果按平均值移动则不会更改样本。
import numpy as np
import matplotlib.pyplot as plt
a = np.array([7.35846410e+08, 8.96271634e+08, 6.16249222e+08,
8.00739868e+08, 1.06116376e+09, 9.05690167e+08, 6.31383600e+08])
b = np.array([1.95621617e+09, 2.06263134e+09, 2.27717015e+09,
2.27281916e+09, 2.71090116e+09, 2.84676385e+09, 3.19578883e+09])
y = np.corrcoef(a, b)
z = plt.xcorr(a, b, normed=True, maxlags=1)
print("Pearson product-moment correlation coefficient between `a` and `b`:", y[0][1])
print("Cross-correlation coefficient between `a` and `b` with 0-lag:", z[1][1], "\n")
# Calculate manually:
def pearson(a, b):
# Length.
n = len(a)
# Means.
ma = sum(a) / n
mb = sum(b) / n
# Shifted samples.
_ama = a - ma
_bmb = b - mb
# Standard deviations.
sa = np.sqrt(np.dot(_ama, _ama) / n)
sb = np.sqrt(np.dot(_bmb, _bmb) / n)
# Covariation.
cov = np.dot(_ama, _bmb) / n
# Final formula.
# Note: division by `n` in deviations and covariation cancel out each other in
# final formula and could be ignored.
return cov / (sa * sb)
def cross0lag(a, b):
return np.dot(a, b) / np.sqrt(np.dot(a, a) * np.dot(b, b))
pearson_coeff = pearson(a, b)
cross_coeff = cross0lag(a, b)
print("Manually calculated coefficients:")
print(" Pearson =", pearson_coeff)
print(" Cross =", cross_coeff, "\n")
# Normalized samples:
am0 = a - sum(a) / len(a)
bm0 = b - sum(b) / len(b)
pearson_coeff = pearson(am0, bm0)
cross_coeff = cross0lag(am0, bm0)
print("Coefficients for samples with means = 0:")
print(" Pearson =", pearson_coeff)
print(" Cross =", cross_coeff)
<强>输出:强>
Pearson product-moment correlation coefficient between `a` and `b`: 0.020995727082
Cross-correlation coefficient between `a` and `b` with 0-lag: 0.970244146831
Manually calculated coefficients:
Pearson = 0.020995727082
Cross = 0.970244146831
Coefficients for samples with means = 0:
Pearson = 0.020995727082
Cross = 0.020995727082
答案 1 :(得分:0)
我使用了http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.xcorr
normed:布尔值,可选,默认值:True
如果为True,则通过第0个滞后的自相关来规范化数据。
在以下代码中,plt_corr
等于np_corr
。
plt_corr = plt.xcorr(a, b, normed=True, maxlags=6)
c = np.correlate(a, a) # autocorrelation of a
d = np.correlate(b, b) # autocorrelation of b
np_corr = np.correlate(a/np.sqrt(c), b/np.sqrt(d), 'full')
答案 2 :(得分:0)
正如 DJV 的回答所说,在 plt.xcorr
上,normed=True
仅对幅度进行标准化。如果您还想归一化为均值 = 0,就像对 Pearson r 所做的那样,您可以添加参数 detrend=mlab.detrend_mean
。
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
plt.xcorr(a, b, normed=True, maxlags=1, detrend=mlab.detrend_mean)