我想用Python创建一个大的(比如10 ^ 5 x 10 ^ 5)稀疏循环矩阵。它在位置[i,i+1], [i,i+2], [i,i+N-2], [i,i+N-1]
处每行有4个元素,其中我假设了索引的周期性边界条件(即[10^5,10^5]=[0,0], [10^5+1,10^5+1]=[1,1]
等等)。我查看了scipy稀疏矩阵文档,但我很困惑(我是Python的新手)。
我可以用numpy
创建矩阵import numpy as np
def Bc(i, boundary):
"""(int, int) -> int
Checks boundary conditions on index
"""
if i > boundary - 1:
return i - boundary
elif i < 0:
return boundary + i
else:
return i
N = 100
diffMat = np.zeros([N, N])
for i in np.arange(0, N, 1):
diffMat[i, [Bc(i+1, N), Bc(i+2, N), Bc(i+2+(N-5)+1, N), Bc(i+2+(N-5)+2, N)]] = [2.0/3, -1.0/12, 1.0/12, -2.0/3]
然而,这是非常慢的,并且对于大N
使用大量内存,所以我想避免使用numpy创建并转换为稀疏矩阵并直接转到后者。
我知道如何在Mathematica中做到这一点,在那里可以使用SparseArray和索引模式 - 这里有类似的东西吗?
答案 0 :(得分:4)
要创建密集循环矩阵,您可以使用scipy.linalg.circulant
。例如,
In [210]: from scipy.linalg import circulant
In [211]: N = 7
In [212]: vals = np.array([2.0/3, -1.0/12, 1.0/12, -2.0/3])
In [213]: offsets = np.array([1, 2, N-2, N-1])
In [214]: col0 = np.zeros(N)
In [215]: col0[offsets] = -vals
In [216]: c = circulant(col0)
In [217]: c
Out[217]:
array([[ 0. , 0.6667, -0.0833, 0. , 0. , 0.0833, -0.6667],
[-0.6667, 0. , 0.6667, -0.0833, 0. , 0. , 0.0833],
[ 0.0833, -0.6667, 0. , 0.6667, -0.0833, 0. , 0. ],
[ 0. , 0.0833, -0.6667, 0. , 0.6667, -0.0833, 0. ],
[ 0. , 0. , 0.0833, -0.6667, 0. , 0.6667, -0.0833],
[-0.0833, 0. , 0. , 0.0833, -0.6667, 0. , 0.6667],
[ 0.6667, -0.0833, 0. , 0. , 0.0833, -0.6667, 0. ]])
正如您所指出的,对于大N
,这需要大量内存,并且大多数值为零。要创建scipy稀疏矩阵,可以使用scipy.sparse.diags
。我们必须为主对角线上方和下方的对角线创建偏移量(和相应的值):
In [218]: from scipy import sparse
In [219]: N = 7
In [220]: vals = np.array([2.0/3, -1.0/12, 1.0/12, -2.0/3])
In [221]: offsets = np.array([1, 2, N-2, N-1])
In [222]: dupvals = np.concatenate((vals, vals[::-1]))
In [223]: dupoffsets = np.concatenate((offsets, -offsets))
In [224]: a = sparse.diags(dupvals, dupoffsets, shape=(N, N))
In [225]: a.toarray()
Out[225]:
array([[ 0. , 0.6667, -0.0833, 0. , 0. , 0.0833, -0.6667],
[-0.6667, 0. , 0.6667, -0.0833, 0. , 0. , 0.0833],
[ 0.0833, -0.6667, 0. , 0.6667, -0.0833, 0. , 0. ],
[ 0. , 0.0833, -0.6667, 0. , 0.6667, -0.0833, 0. ],
[ 0. , 0. , 0.0833, -0.6667, 0. , 0.6667, -0.0833],
[-0.0833, 0. , 0. , 0.0833, -0.6667, 0. , 0.6667],
[ 0.6667, -0.0833, 0. , 0. , 0.0833, -0.6667, 0. ]])
矩阵存储在&#34;对角线&#34;格式:
In [226]: a
Out[226]:
<7x7 sparse matrix of type '<class 'numpy.float64'>'
with 28 stored elements (8 diagonals) in DIAgonal format>
您可以使用稀疏矩阵的转换方法将其转换为不同的稀疏格式。例如,以下结果以CSR格式生成矩阵:
In [227]: a.tocsr()
Out[227]:
<7x7 sparse matrix of type '<class 'numpy.float64'>'
with 28 stored elements in Compressed Sparse Row format>