My Dataframe(df)如下所示:
Error: instruction cannot be conditional -- `vst1ne.u8 {d12},[outI]!'
我希望数据框如下所示:
vcmp.f64 d12, #0
vmrs APSR_nzcv, fpscr
beq .jumpover
vst1.u8 {d12}, [outI]!
.jumpover:
我厌倦了pandas中的df.pivot,我可以提供单值列。它不需要多于一个。当我提供不止一个时,我得到以下异常。 pandas_pivot
Date FieldA ValueA ValueB
09-02-2016 TypeA 3 5
09-02-2016 TypeB 6 7
答案 0 :(得分:2)
df1 = df.set_index(['Date', 'FieldA']).unstack()
df1.columns = df1.columns.map('_'.join)
df1.reset_index()
from StringIO import StringIO
import pandas as pd
text = """Date FieldA ValueA ValueB
09-02-2016 TypeA 3 5
09-02-2016 TypeB 6 7"""
df = pd.read_csv(StringIO(text), delim_whitespace=True)
df
答案 1 :(得分:0)
In [36]: df
Out[36]:
Date FieldA ValueA ValueB
0 2016-09-02 TypeA 3 5
1 2016-09-02 TypeB 6 7
2 2016-09-03 TypeA 4 8
3 2016-09-03 TypeB 3 9
In [37]: v_cols = df.columns.difference(['FieldA', 'Date'])
In [38]: def func(x):
...: d = {'_'.join([t, c]): x[x['FieldA'] == t][c].iloc[0] for t in x.FieldA for c in v_cols}
...: for k, v in d.iteritems():
...: x[k] = v
...: return x
...:
In [39]: newdf = df.groupby('Date').apply(func)
In [40]: newdf.drop(v_cols.tolist() + ['FieldA'], axis=1).drop_duplicates()
Out[340]:
Date TypeA_ValueA TypeA_ValueB TypeB_ValueA TypeB_ValueB
0 2016-09-02 3 5 6 7
2 2016-09-03 4 8 3 9
答案 2 :(得分:0)
使用 match "*path", :to => proc {|env| [200, {
'Access-Control-Allow-Origin' => '*',
'Access-Control-Allow-Methods' => 'GET, POST, PUT, DELETE, OPTIONS',
'Access-Control-Allow-Credentials' => 'true',
'Access-Control-Request-Method' => '*',
'Access-Control-Allow-Headers' => 'Origin, X-Requested-With, Content-Type, Accept, Authorization',
'Content-Type' => 'text/plain'
}, ["CORS Preflight"]] }, :via => [:options]
。
pd.pivot_table
因此,您将获得具有MultiIndex的DataFrame。如果要将其展平并在列名中使用In [1]: pd.pivot_table(df, index='Date', columns='FieldA', values=['ValueA', 'ValueB'])
Out[1]:
ValueA ValueB
FieldA TypeA TypeB TypeA TypeB
Date
09-02-2016 3 6 5 7
作为分隔符,则可以执行以下操作:
_