比较列表推导和显式循环(3个数组生成器快于1 for for循环)

时间:2016-09-15 19:28:07

标签: python arrays python-2.7 time list-comprehension

我做了功课,我意外地发现了算法速度的奇怪不一致。 这是2个版本的相同功能bur的代码,有1个区别:在第一个版本中,我使用3次数组生成器来过滤一些数组,在第二个版本中,我使用1 for for循环,使用3 if语句进行相同的过滤工作。

所以,这是第一版的代码:

def kth_order_statistic(array, k):
    pivot = (array[0] + array[len(array) - 1]) // 2
    l = [x for x in array if x < pivot]
    m = [x for x in array if x == pivot]
    r = [x for x in array if x > pivot]
    if k <= len(l):
            return kth_order_statistic(l, k)
    elif k > len(l) + len(m):
            return kth_order_statistic(r, k - len(l) - len(m))
    else:
            return m[0]

这里是第二版的代码:

def kth_order_statistic2(array, k):
    pivot = (array[0] + array[len(array) - 1]) // 2
    l = []
    m = []
    r = []
    for x in array:
        if x < pivot:
            l.append(x)
        elif x > pivot:
            r.append(x)
        else:
            m.append(x)

    if k <= len(l):
        return kth_order_statistic2(l, k)
    elif k > len(l) + len(m):
        return kth_order_statistic2(r, k - len(l) - len(m))
    else:
        return m[0]

第一版的IPython输出:

In [4]: %%timeit
   ...: A = range(100000)
   ...: shuffle(A)
   ...: k = randint(1, len(A)-1)
   ...: order_statisctic(A, k)
   ...:
10 loops, best of 3: 120 ms per loop

第二版:

In [5]: %%timeit
   ...: A = range(100000)
   ...: shuffle(A)
   ...: k = randint(1, len(A)-1)
   ...: kth_order_statistic2(A, k)
   ...:
10 loops, best of 3: 169 ms per loop

那么为什么第一版比第二版更快?我还使用filter()函数而不是数组生成器制作第三个版本,它比第二个版本慢(每个循环得到218毫秒)

4 个答案:

答案 0 :(得分:8)

使用简单forlist comprehesion快。它快了近2倍。检查以下结果:

使用list comprehension 58 usec

moin@moin-pc:~$ python -m timeit "[i for i in range(1000)]"
10000 loops, best of 3: 58 usec per loop

使用for循环: 37.1 usec

moin@moin-pc:~$ python -m timeit "for i in range(1000): i"
10000 loops, best of 3: 37.1 usec per loop

但在你的情况下,for比列表理解花费的时间更长,不是因为你的循环很慢。但由于您在代码中使用了.append()

append()循环中的for 114 usec

moin@moin-pc:~$ python -m timeit "my_list = []" "for i in range(1000): my_list.append(i)"
10000 loops, best of 3: 114 usec per loop

这清楚地表明, .append()花费的时间是for循环的两倍。

但是,在storing the "list.append" in different variable上: 69.3 usec

moin@moin-pc:~$ python -m timeit "my_list = []; append = my_list.append" "for i in range(1000): append(i)"
10000 loops, best of 3: 69.3 usec per loop

与上述比较中的最后一个案例相比,性能有了很大的提高,结果与list comprehension的结果相当。这意味着,不是每次调用my_list.append(),而是通过将函数的引用存储在另一个变量append_func = my_list.append中并使用该变量append_func(i)进行调用来提高性能。

其中也证明,与使用类的对象直接调用函数调用相比,调用存储在变量中的类函数更快。

感谢您Stefan通知最后一个案例。

答案 1 :(得分:6)

让我们定义回答问题所需的功能并将它们计时:

In [18]: def iter():
    l = [x for x in range(100) if x > 10]
   ....:

In [19]: %timeit iter()
100000 loops, best of 3: 7.92 µs per loop

In [20]: def loop():
    l = []
    for x in range(100):
        if x > 10:
            l.append(x)
   ....:

In [21]: %timeit loop()
10000 loops, best of 3: 20 µs per loop

In [22]: def loop_fast():
    l = []
    for x in range(100):
        if x > 10:
            pass
   ....:

In [23]: %timeit loop_fast()
100000 loops, best of 3: 4.69 µs per loop

我们可以看到没有append命令的for循环和列表理解一样快。实际上,如果我们看一下字节码,我们可以看到,在列表解析的情况下,python能够使用一个名为LIST_APPEND的内置字节码命令,而不是:

  • 加载列表:40 LOAD_FAST
  • 加载属性:43 LOAD_ATTRIBUTE
  • 调用加载的函数:49 CALL_FUNCTION
  • 卸载列表(?):52 POP_TOP

从下面的输出可以看出,前一个字节码缺少列表理解和&#34; loop_fast&#34;功能。比较三个函数的时间是很明显的,那些负责三种方法的不同时间。

In [27]: dis.dis(iter)
  2          0 BUILD_LIST             0
             3 LOAD_GLOBAL            0 (range)
             6 LOAD_CONST             1 (1)
             9 LOAD_CONST             2 (100)
            12 CALL_FUNCTION          2
            15 GET_ITER
       >>   16 FOR_ITER              24 (to 43)
            19 STORE_FAST             0 (x)
            22 LOAD_FAST              0 (x)
            25 LOAD_CONST             2 (100)
            28 COMPARE_OP             4 (>)
            31 POP_JUMP_IF_FALSE     16
            34 LOAD_FAST              0 (x)
            37 LIST_APPEND            2
            40 JUMP_ABSOLUTE         16
       >>   43 STORE_FAST             1 (l)
            46 LOAD_CONST             0 (None)
            49 RETURN_VALUE

In [28]: dis.dis(loop)
  2          0 BUILD_LIST             0
             3 STORE_FAST             0 (1)

  3          6 SETUP_LOOP            51 (to 60)
             9 LOAD_GLOBAL            0 (range)
            12 LOAD_CONST             1 (1)
            15 LOAD_CONST             2 (100)
            18 CALL_FUNCTION          2
            21 GET_ITER
       >>   22 FOR_ITER              34 (to 59)
            25 STORE_FAST             1 (x)

  4         28 LOAD_FAST              1 (x)
            31 LOAD_CONST             3 (10)
            34 COMPARE_OP             4 (>)
            37 POP_JUMP_IF_FALSE     22

  5         40 LOAD_FAST              0 (l)
            43 LOAD_ATTR              1 (append)
            46 LOAD_FAST              1 (x)
            49 CALL_FUNCTION          1
            52 POP_TOP
            53 JUMP_ABSOLUTE         22
            56 JUMP_ABSOLUTE         22
       >>   59 POP_BLOCK
       >>   60 LOAD_CONST             0 (None)
            63 RETURN_VALUE

In [29]: dis.dis(loop_fast)
  2          0 BUILD_LIST             0
             3 STORE_FAST             0 (1)

  3          6 SETUP_LOOP            38 (to 47)
             9 LOAD_GLOBAL            0 (range)
            12 LOAD_CONST             1 (1)
            15 LOAD_CONST             2 (100)
            18 CALL_FUNCTION          2
            21 GET_ITER
       >>   22 FOR_ITER              21 (to 46)
            25 STORE_FAST             1 (x)

  4         28 LOAD_FAST              1 (x)
            31 LOAD_CONST             3 (10)
            34 COMPARE_OP             4 (>)
            37 POP_JUMP_IF_FALSE     22

  5         40 JUMP_ABSOLUTE         22
            43 JUMP_ABSOLUTE         22
       >>   46 POP_BLOCK
       >>   47 LOAD_CONST             0 (None)
            50 RETURN_VALUE

答案 2 :(得分:3)

让我们消除这种怀疑: 第二个版本稍快一些:列表理解更快,但是在一次迭代中丢弃了两个数组循环和多个条件。

def kth_order_statistic1(array,k):
    pivot = (array[0] + array[len(array) - 1]) // 2
    l = [x for x in array if x < pivot]
    m = [x for x in array if x == pivot]
    r = [x for x in array if x > pivot]

    if k <= len(l):
        return kth_order_statistic1(l, k)
    elif k > len(l) + len(m):
        return kth_order_statistic1(r, k - len(l) - len(m))
    else:
        return m[0]


def kth_order_statistic2(array,k):
    pivot = (array[0] + array[len(array) - 1]) // 2
    l = []
    m = []
    r = []
    for x in array:
        if x < pivot:
            l.append(x)
        elif x > pivot:
            r.append(x)
        else:
            m.append(x)

    if k <= len(l):
        return kth_order_statistic2(l, k)
    elif k > len(l) + len(m):
        return kth_order_statistic2(r, k - len(l) - len(m))
    else:
        return m[0]

def kth_order_statistic3(array,k):
    pivot = (array[0] + array[len(array) - 1]) // 2
    l = []
    m = []
    r = []

    for x in array: 
       if x < pivot: l.append(x)
    for x in array: 
       if x== pivot: m.append(x)
    for x in array: 
       if x > pivot: r.append(x)

    if k <= len(l):
        return kth_order_statistic3(l, k)
    elif k > len(l) + len(m):
        return kth_order_statistic3(r, k - len(l) - len(m))
    else:
        return m[0]

import time
import random
if __name__ == '__main__':

    A = range(100000)
    random.shuffle(A)
    k = random.randint(1, len(A)-1)

    start_time = time.time()
    for x in range(1000) :
        kth_order_statistic1(A,k)
    print("--- %s seconds ---" % (time.time() - start_time))

    start_time = time.time()
    for x in range(1000) :
        kth_order_statistic2(A,k)
    print("--- %s seconds ---" % (time.time() - start_time))

    start_time = time.time()
    for x in range(1000) :
        kth_order_statistic3(A,k)
    print("--- %s seconds ---" % (time.time() - start_time))


python :
--- 25.8894710541 seconds ---
--- 24.073086977 seconds ---
--- 32.9823839664 seconds ---

ipython
--- 25.7450709343 seconds ---
--- 22.7140650749 seconds ---
--- 35.2958850861 seconds ---

时间可能因随机抽签而异,但三者之间的差异几乎相同。

答案 3 :(得分:2)

算法结构不同,条件结构是有罪的。可以通过之前的测试丢弃附加到r和m中的测试。关于具有append的for循环和列表理解的更严格的比较将反对非最优的跟随

for x in array:
        if x < pivot:
            l.append(x)
for x in array:
        if x== pivot:
            m.append(x)
for x in array:
        if x > pivot:
            r.append(x)