就Python的性能而言,是一个列表理解,还是比for循环更快的map(),filter()和reduce()等函数?从技术上讲,为什么它们“以C速度运行”,而“for循环以python虚拟机速度运行”?
假设在我正在开发的游戏中,我需要使用for循环绘制复杂且巨大的地图。这个问题肯定是相关的,因为如果列表理解确实更快,那么为了避免滞后(尽管代码的视觉复杂性),这将是一个更好的选择。
答案 0 :(得分:106)
以下是基于经验的粗略指导和有根据的猜测。您应该timeit
或描述您的具体用例以获取更难的数字,这些数字可能偶尔会与下面的数字不一致。
列表理解通常比精确等效的for
循环(实际构建列表)快一点,很可能是因为它不必查找列表及其append
每次迭代的方法。但是,列表推导仍然会执行字节码级循环:
>>> dis.dis(<the code object for `[x for x in range(10)]`>)
1 0 BUILD_LIST 0
3 LOAD_FAST 0 (.0)
>> 6 FOR_ITER 12 (to 21)
9 STORE_FAST 1 (x)
12 LOAD_FAST 1 (x)
15 LIST_APPEND 2
18 JUMP_ABSOLUTE 6
>> 21 RETURN_VALUE
使用列表推导代替不构建列表的循环,无意义地累积无意义值列表然后抛弃列表,通常更慢因为创建和扩展列表的开销。列表推导不是神奇的,本质上比旧循环更快。
关于功能列表处理功能:虽然它们是用C语言编写的,并且可能胜过用Python编写的等效函数,但它们不必然是最快的选择。预计会有一些加速如果函数也是用C语言编写的。但是大多数情况下使用lambda
(或其他Python函数),重复设置Python堆栈帧等的开销会减少任何节省。简单地在线执行相同的工作,没有函数调用(例如列表理解而不是map
或filter
)通常会稍快一些。
假设在我正在开发的游戏中,我需要使用for循环绘制复杂且巨大的地图。这个问题肯定是相关的,因为如果列表理解确实更快,那么为了避免滞后(尽管代码的视觉复杂性),这将是一个更好的选择。
如果像这样的代码在用非“优化”的Python编写时已经不够快,那么很可能没有多少Python级别的微优化能够让它足够快,你应该开始考虑下降到C虽然广泛的微优化通常可以大大加快Python代码的速度,但对此有一个较低的(绝对值)限制。而且,即使在你达到这个上限之前,它也会变得更具成本效益(加速15%,相同的努力加速300%)咬住子弹并写下一些C.
答案 1 :(得分:14)
如果您查看info on python.org,则可以看到此摘要:
Version Time (seconds)
Basic loop 3.47
Eliminate dots 2.45
Local variable & no dots 1.79
Using map function 0.54
但你真的应该详细阅读上述文章,以了解性能差异的原因。
我还强烈建议您使用timeit计算代码时间。在一天结束时,可能存在这样的情况:例如,当满足条件时,您可能需要突破for
循环。它可能比通过调用map
找出结果更快。
答案 2 :(得分:12)
你具体询问map(),filter()和reduce(),但我想你一般都想了解函数式编程。我自己测试了计算一组点内所有点之间距离的问题,函数式编程(使用内置itertools模块中的starmap函数)结果比for循环略慢(长度为1.25倍) , 事实上)。以下是我使用的示例代码:
import itertools, time, math, random
class Point:
def __init__(self,x,y):
self.x, self.y = x, y
point_set = (Point(0, 0), Point(0, 1), Point(0, 2), Point(0, 3))
n_points = 100
pick_val = lambda : 10 * random.random() - 5
large_set = [Point(pick_val(), pick_val()) for _ in range(n_points)]
# the distance function
f_dist = lambda x0, x1, y0, y1: math.sqrt((x0 - x1) ** 2 + (y0 - y1) ** 2)
# go through each point, get its distance from all remaining points
f_pos = lambda p1, p2: (p1.x, p2.x, p1.y, p2.y)
extract_dists = lambda x: itertools.starmap(f_dist,
itertools.starmap(f_pos,
itertools.combinations(x, 2)))
print('Distances:', list(extract_dists(point_set)))
t0_f = time.time()
list(extract_dists(large_set))
dt_f = time.time() - t0_f
功能版本是否比程序版本更快?
def extract_dists_procedural(pts):
n_pts = len(pts)
l = []
for k_p1 in range(n_pts - 1):
for k_p2 in range(k_p1, n_pts):
l.append((pts[k_p1].x - pts[k_p2].x) ** 2 +
(pts[k_p1].y - pts[k_p2].y) ** 2)
return l
t0_p = time.time()
list(extract_dists_procedural(large_set))
# using list() on the assumption that
# it eats up as much time as in the functional version
dt_p = time.time() - t0_p
f_vs_p = dt_p / dt_f
if f_vs_p >= 1.0:
print('Time benefit of functional progamming:', f_vs_p,
'times as fast for', n_points, 'points')
else:
print('Time penalty of functional programming:', 1 / f_vs_p,
'times as slow for', n_points, 'points')
答案 3 :(得分:7)
我修改了@Alisa's code并使用cProfile
来说明为什么列表理解更快:
from functools import reduce
import datetime
def reduce_(numbers):
return reduce(lambda sum, next: sum + next * next, numbers, 0)
def for_loop(numbers):
a = []
for i in numbers:
a.append(i*2)
a = sum(a)
return a
def map_(numbers):
sqrt = lambda x: x*x
return sum(map(sqrt, numbers))
def list_comp(numbers):
return(sum([i*i for i in numbers]))
funcs = [
reduce_,
for_loop,
map_,
list_comp
]
if __name__ == "__main__":
# [1, 2, 5, 3, 1, 2, 5, 3]
import cProfile
for f in funcs:
print('=' * 25)
print("Profiling:", f.__name__)
print('=' * 25)
pr = cProfile.Profile()
for i in range(10**6):
pr.runcall(f, [1, 2, 5, 3, 1, 2, 5, 3])
pr.create_stats()
pr.print_stats()
结果如下:
=========================
Profiling: reduce_
=========================
11000000 function calls in 1.501 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.162 0.000 1.473 0.000 profiling.py:4(reduce_)
8000000 0.461 0.000 0.461 0.000 profiling.py:5(<lambda>)
1000000 0.850 0.000 1.311 0.000 {built-in method _functools.reduce}
1000000 0.028 0.000 0.028 0.000 {method 'disable' of '_lsprof.Profiler' objects}
=========================
Profiling: for_loop
=========================
11000000 function calls in 1.372 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.879 0.000 1.344 0.000 profiling.py:7(for_loop)
1000000 0.145 0.000 0.145 0.000 {built-in method builtins.sum}
8000000 0.320 0.000 0.320 0.000 {method 'append' of 'list' objects}
1000000 0.027 0.000 0.027 0.000 {method 'disable' of '_lsprof.Profiler' objects}
=========================
Profiling: map_
=========================
11000000 function calls in 1.470 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.264 0.000 1.442 0.000 profiling.py:14(map_)
8000000 0.387 0.000 0.387 0.000 profiling.py:15(<lambda>)
1000000 0.791 0.000 1.178 0.000 {built-in method builtins.sum}
1000000 0.028 0.000 0.028 0.000 {method 'disable' of '_lsprof.Profiler' objects}
=========================
Profiling: list_comp
=========================
4000000 function calls in 0.737 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.318 0.000 0.709 0.000 profiling.py:18(list_comp)
1000000 0.261 0.000 0.261 0.000 profiling.py:19(<listcomp>)
1000000 0.131 0.000 0.131 0.000 {built-in method builtins.sum}
1000000 0.027 0.000 0.027 0.000 {method 'disable' of '_lsprof.Profiler' objects}
恕我直言:
reduce
和map
通常非常慢。不仅如此,与sum
返回列表相比,在map
返回的迭代器上使用sum
很慢for_loop
使用append,这在某种程度上当然很慢sum
相比,它也使map
更快。答案 4 :(得分:6)
我写了一个测试速度的简单脚本,这就是我发现的。实际上for循环在我的情况下是最快的。这真让我感到惊讶,请查看贝娄(正在计算平方和)。
from functools import reduce
import datetime
def time_it(func, numbers, *args):
start_t = datetime.datetime.now()
for i in range(numbers):
func(args[0])
print (datetime.datetime.now()-start_t)
def square_sum1(numbers):
return reduce(lambda sum, next: sum+next**2, numbers, 0)
def square_sum2(numbers):
a = 0
for i in numbers:
i = i**2
a += i
return a
def square_sum3(numbers):
sqrt = lambda x: x**2
return sum(map(sqrt, numbers))
def square_sum4(numbers):
return(sum([int(i)**2 for i in numbers]))
time_it(square_sum1, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum2, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum3, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum4, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
0:00:00.302000 #Reduce
0:00:00.144000 #For loop
0:00:00.318000 #Map
0:00:00.390000 #List comprehension
答案 5 :(得分:4)
向Alphii answer添加一个扭曲,实际上for循环将是第二好的,比map
慢约6倍
from functools import reduce
import datetime
def time_it(func, numbers, *args):
start_t = datetime.datetime.now()
for i in range(numbers):
func(args[0])
print (datetime.datetime.now()-start_t)
def square_sum1(numbers):
return reduce(lambda sum, next: sum+next**2, numbers, 0)
def square_sum2(numbers):
a = 0
for i in numbers:
a += i**2
return a
def square_sum3(numbers):
a = 0
map(lambda x: a+x**2, numbers)
return a
def square_sum4(numbers):
a = 0
return [a+i**2 for i in numbers]
time_it(square_sum1, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum2, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum3, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum4, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
主要的变化是消除慢sum
次调用,以及最后一种情况下可能不必要的int()
。实际上,将for循环和地图放在相同的术语中是非常事实。请记住,lambdas是功能概念,理论上不应该有副作用,但是,它们可以具有添加到a
等副作用。
在这种情况下,使用Python 3.6.1,Ubuntu 14.04,Intel(R)Core(TM)i7-4770 CPU @ 3.40GHz
0:00:00.257703
0:00:00.184898
0:00:00.031718
0:00:00.212699
答案 6 :(得分:0)
我设法修改了@alpiii's的一些代码,发现List理解比for循环快一点。它可能是由int()
引起的,在列表理解和for循环之间是不公平的。
from functools import reduce
import datetime
def time_it(func, numbers, *args):
start_t = datetime.datetime.now()
for i in range(numbers):
func(args[0])
print (datetime.datetime.now()-start_t)
def square_sum1(numbers):
return reduce(lambda sum, next: sum+next*next, numbers, 0)
def square_sum2(numbers):
a = []
for i in numbers:
a.append(i*2)
a = sum(a)
return a
def square_sum3(numbers):
sqrt = lambda x: x*x
return sum(map(sqrt, numbers))
def square_sum4(numbers):
return(sum([i*i for i in numbers]))
time_it(square_sum1, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum2, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum3, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum4, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
0:00:00.101122
0:00:00.089216
0:00:00.101532
0:00:00.068916