基于text2vec包的插图,提供了一个示例来创建单词嵌入。维基数据被标记化,然后创建术语共生矩阵(TCM),用于创建使用手套功能提供的单词嵌入。包。 我想为随包提供的电影评论数据构建单词嵌入。我的问题是:
这将导致2次评论之间的边界令牌共同发生,这是没有意义的。
**vignettes code:**
library(text2vec)
library(readr)
temp <- tempfile()
download.file('http://mattmahoney.net/dc/text8.zip', temp)
wiki <- read_lines(unz(temp, "text8"))
unlink(temp)
# Create iterator over tokens
tokens <- strsplit(wiki, split = " ", fixed = T)
# Create vocabulary. Terms will be unigrams (simple words).
vocab <- create_vocabulary(itoken(tokens))
vocab <- prune_vocabulary(vocab, term_count_min = 5L)
# We provide an iterator to create_vocab_corpus function
it <- itoken(tokens)
# Use our filtered vocabulary
vectorizer <- vocab_vectorizer(vocab,
# don't vectorize input
grow_dtm = FALSE,
# use window of 5 for context words
skip_grams_window = 5L)
tcm <- create_tcm(it, vectorizer)
fit <- glove(tcm = tcm,
word_vectors_size = 50,
x_max = 10, learning_rate = 0.2,
num_iters = 15)
我对开发单词嵌入感兴趣的数据可以得到如下:
library(text2vec)
data("movie_review")
答案 0 :(得分:3)
不,您不需要连接评论。你只需要从令牌上的正确迭代器构造tcm
:
library(text2vec)
data("movie_review")
tokens = movie_review$review %>% tolower %>% word_tokenizer
it = itoken(tokens)
# create vocabulary
v = create_vocabulary(it) %>%
prune_vocabulary(term_count_min = 5)
# create co-occurrence vectorizer
vectorizer = vocab_vectorizer(v, grow_dtm = F, skip_grams_window = 5)
现在我们需要重新初始化(对于稳定的0.3版本。对于dev 0.4,不需要重新初始化迭代器):
it = itoken(tokens)
tcm = create_tcm(it, vectorizer)
适合模特:
fit <- glove(tcm = tcm,
word_vectors_size = 50,
x_max = 10, learning_rate = 0.2,
num_iters = 15)