答案 0 :(得分:0)
文档似乎仅限于作者提供的示例。 https://github.com/wreszelewski/nsga2/tree/master/examples
在演变过程中收集指标,然后绘制每代hvr指标
from metrics.problems.zdt import ZDT3Metrics
from nsga2.evolution import Evolution
from nsga2.problems.zdt import ZDT
from nsga2.problems.zdt.zdt3_definitions import ZDT3Definitions
from plotter import Plotter
def print_generation(population, generation_num):
print("Generation: {}".format(generation_num))
def print_metrics(population, generation_num):
pareto_front = population.fronts[0]
metrics = ZDT3Metrics()
hv = metrics.HV(pareto_front)
hvr = metrics.HVR(pareto_front)
print("HV: {}".format(hv))
print("HVR: {}".format(hvr))
collected_metrics = {}
def collect_metrics(population, generation_num):
pareto_front = population.fronts[0]
metrics = ZDT3Metrics()
hv = metrics.HV(pareto_front)
hvr = metrics.HVR(pareto_front)
collected_metrics[generation_num] = hv, hvr
zdt_definitions = ZDT3Definitions()
plotter = Plotter(zdt_definitions)
problem = ZDT(zdt_definitions)
evolution = Evolution(problem, 200, 200)
evolution.register_on_new_generation(plotter.plot_population_best_front)
evolution.register_on_new_generation(print_generation)
evolution.register_on_new_generation(print_metrics)
evolution.register_on_new_generation(collect_metrics)
pareto_front = evolution.evolve()
plotter.plot_x_y(collected_metrics.keys(), map(lambda (hv, hvr): hvr, collected_metrics.values()), 'generation', 'HVR', 'HVR metric for ZDT3 problem', 'hvr-zdt3')
在演变过程中收集指标,然后绘制每代hvr指标
import os
import matplotlib.pyplot as pyplot
class Plotter():
def __init__(self, problem):
self.directory = 'plots'
self.problem = problem
def plot_population_best_front(self, population, generation_number):
if generation_number % 10 == 0:
filename = "{}/generation{}.png".format(self.directory, str(generation_number))
self.__create_directory_if_not_exists()
computed_pareto_front = population.fronts[0]
self.__plot_front(computed_pareto_front, filename)
def plot_x_y(self, x, y, x_label, y_label, title, filename):
filename = "{}/{}.png".format(self.directory, filename)
self.__create_directory_if_not_exists()
figure = pyplot.figure()
axes = figure.add_subplot(111)
axes.plot(x, y, 'r')
axes.set_xlabel(x_label)
axes.set_ylabel(y_label)
axes.set_title(title)
pyplot.savefig(filename)
pyplot.close(figure)
def __create_directory_if_not_exists(self):
if not os.path.exists(self.directory):
os.makedirs(self.directory)
def __plot_front(self, front, filename):
figure = pyplot.figure()
axes = figure.add_subplot(111)
computed_f1 = map(lambda individual: individual.objectives[0], front)
computed_f2 = map(lambda individual: individual.objectives[1], front)
axes.plot(computed_f1, computed_f2, 'g.')
perfect_pareto_front_f1, perfect_pareto_front_f2 = self.problem.perfect_pareto_front()
axes.plot(perfect_pareto_front_f1, perfect_pareto_front_f2, 'r.')
axes.set_xlabel('f1')
axes.set_ylabel('f2')
axes.set_title('Computed Pareto front')
pyplot.savefig(filename)
pyplot.close(figure)
他们帮你吗?