在多级线性回归的Pymc3示例中(示例为here,使用Gelman等人(2007)的DoubleAnimationUsingKeyFrames
数据集),拦截(针对不同的县)和斜坡(有和没有地下室的公寓)每个都有一个普通的先前。如何将它们与多元正态先验模型一起建模,以便我可以检查它们之间的相关性?
示例中给出的层次模型如下:
radon
我正试图对先辈们进行一些改变
with pm.Model() as hierarchical_model:
# Hyperpriors for group nodes
mu_a = pm.Normal('mu_a', mu=0., sd=100**2)
sigma_a = pm.HalfCauchy('sigma_a', 5)
mu_b = pm.Normal('mu_b', mu=0., sd=100**2)
sigma_b = pm.HalfCauchy('sigma_b', 5)
# Intercept for each county, distributed around group mean mu_a
# Above we just set mu and sd to a fixed value while here we
# plug in a common group distribution for all a and b (which are
# vectors of length n_counties).
a = pm.Normal('a', mu=mu_a, sd=sigma_a, shape=n_counties)
# Intercept for each county, distributed around group mean mu_a
b = pm.Normal('b', mu=mu_b, sd=sigma_b, shape=n_counties)
# Model error
eps = pm.HalfCauchy('eps', 5)
radon_est = a[county_idx] + b[county_idx] * data.floor.values
# Data likelihood
radon_like = pm.Normal('radon_like', mu=radon_est, sd=eps, observed=data.log_radon)
hierarchical_trace = pm.sample(2000)
以下是我收到的错误消息:
with pm.Model() as correlation_model:
# Hyperpriors for group nodes
mu_a = pm.Normal('mu_a', mu=0., sd=100**2)
mu_b = pm.Normal('mu_b', mu=0., sd=100**2)
# here I want to model a and b together
# I borrowed some code from a multivariate normal model
# but the code does not work
sigma = pm.HalfCauchy('sigma', 5, shape=2)
C_triu = pm.LKJCorr('C_triu', n=2, p=2)
C = T.fill_diagonal(C_triu[np.zeros((2,2), 'int')], 1)
cov = pm.Deterministic('cov', T.nlinalg.matrix_dot(sigma, C, sigma))
tau = pm.Deterministic('tau', T.nlinalg.matrix_inverse(cov))
a, b = pm.MvNormal('mu', mu=(mu_a, mu_b), tau=tau,
shape=(n_counties, n_counties))
# Model error
eps = pm.HalfCauchy('eps', 5)
radon_est = a[county_idx] + b[county_idx] * data.floor.values
# Data likelihood
radon_like = pm.Normal('radon_like', mu=radon_est, sd=eps, observed=data.log_radon)
correlation_trace = pm.sample(2000)
显然,我对协方差矩阵犯了一些错误,但我是 File "<ipython-input-108-ce400c54cc39>", line 14, in <module>
tau = pm.Deterministic('tau', T.nlinalg.matrix_inverse(cov))
File "/home/olivier/anaconda3/lib/python3.5/site-packages/theano/gof/op.py", line 611, in __call__
node = self.make_node(*inputs, **kwargs)
File "/home/olivier/anaconda3/lib/python3.5/site-packages/theano/tensor/nlinalg.py", line 73, in make_node
assert x.ndim == 2
AssertionError
的新手,而且是pymc3
的新手,所以不知道如何修复它。我认为这应该是一个相当常见的用例,所以可能有一些例子吗?我找不到它们。
可以在示例页面上看到完整的可复制代码和数据(上面给出的链接)。我没有把它包括在这里,因为它太长了,而且我认为那些熟悉theano
的人很可能已经非常熟悉它了。)
答案 0 :(得分:3)
在创建错误指定MvNormal形状的协方差矩阵时,您忘记添加一行。你的模型应该是这样的:
with pm.Model() as correlation_model:
mu = pm.Normal('mu', mu=0., sd=10, shape=2)
sigma = pm.HalfCauchy('sigma', 5, shape=2)
C_triu = pm.LKJCorr('C_triu', n=2, p=2)
C = tt.fill_diagonal(C_triu[np.zeros((2,2), 'int')], 1.)
sigma_diag = tt.nlinalg.diag(sigma) # this line
cov = tt.nlinalg.matrix_dot(sigma_diag, C, sigma_diag)
tau = tt.nlinalg.matrix_inverse(cov)
ab = pm.MvNormal('ab', mu=mu, tau=tau, shape=(n_counties, 2))
eps = pm.HalfCauchy('eps', 5)
radon_est = ab[:,0][county_idx] + ab[:,1][county_idx] * data.floor.values
radon_like = pm.Normal('radon_like', mu=radon_est, sd=eps, observed=data.log_radon)
trace = pm.sample(2000)
注意,或者,您可以从hierarchical_model
的后验评估截距与斜率的相关性。您可以使用频率论方法或构建另一个贝叶斯模型,该模型将hierarchical_model
的结果作为观察数据。可能这可能会更快。
修改
如果你想从后验评估两个变量的相关性,你可以做类似的事情。
chain = hierarchical_trace[100:]
x_0 = chain['mu_a']
x_1 = chain['mu_b']
X = np.vstack((x_0, x_1)).T
然后您可以运行以下模型:
with pm.Model() as correlation:
mu = pm.Normal('mu', mu=0., sd=10, shape=2)
sigma = pm.HalfCauchy('sigma', 5, shape=2)
C_triu = pm.LKJCorr('C_triu', n=2, p=2)
C = tt.fill_diagonal(C_triu[np.zeros((2,2), 'int')], 1.)
sigma_diag = tt.nlinalg.diag(sigma)
cov = tt.nlinalg.matrix_dot(sigma_diag, C, sigma_diag)
tau = tt.nlinalg.matrix_inverse(cov)
yl = pm.MvNormal('yl', mu=mu, tau=tau, shape=(2, 2), observed=X)
trace = pm.sample(5000, pm.Metropolis())
您可以根据需要更换x_0和x_1。例如,您可能想要这样做:
x_0 = np.random.normal(chain['mu_a'], chain['sigma_a'])
x_1 = np.random.normal(chain['mu_b'], chain['sigma_b'])