我有一个数据框,其中有多个列具有相似的列名。我希望用那些右边有数据的列填充空单元格。
Address1 Address2 Address3 Address4 Phone1 Phone2 Phone3 Phone4
ABC nan def nan 9091-XYz nan nan XYZ-ABZ
应该将列移动到类似
的列Address1 Address2 Address3 Address4 Phone1 Phone2 Phone3 Phone4
ABC def nan nan 9091-XYz XYZ-ABZ nan nan
另一个question解决了类似的问题。
pdf = pd.read_csv('Data.txt',sep='\t')
# gets a set of columns removing the numerical part
columns = set(map(lambda x : x.rstrip('0123456789'),pdf.columns))
for col_pattern in columns:
# get columns with similar names
current = [col for col in pdf.columns if col_pattern in col]
coldf= pdf[current]
# shift columns to the left
文件Data.txt
具有按列名排序的列,因此所有具有相似名称的列都汇集在一起。
对此有任何帮助表示赞赏
我曾尝试将此内容添加到链接中的上述代码中,但内存不足:
newdf=pd.read_csv(StringIO(u''+re.sub(',+',',',df.to_csv()).decode('utf-8')))
list_.append(newdf)
pd.concat(list_,axis=0).to_csv('test.txt')
答案 0 :(得分:3)
<强> pushna
强>
将所有空值推送到系列的末尾
<强> coltype
强>
使用regex
从所有列名称中提取非数字前缀
def pushna(s):
notnull = s[s.notnull()]
isnull = s[s.isnull()]
values = notnull.append(isnull).values
return pd.Series(values, s.index)
coltype = df.columns.to_series().str.extract(r'(\D*)', expand=False)
df.groupby(coltype, axis=1).apply(lambda df: df.apply(pushna, axis=1))
答案 1 :(得分:3)
MultiIndex
和dropna
的解决方案:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Address1': {0: 'ABC', 1: 'ABC'},
'Address2': {0: np.nan, 1: np.nan},
'Address3': {0: 'def', 1: 'def'},
'Phone4': {0: 'XYZ-ABZ', 1: 'XYZ-ABZ'},
'Address4': {0: np.nan, 1: np.nan},
'Phone1': {0: '9091-XYz', 1: 'Z9091-XYz'},
'Phone3': {0: np.nan, 1: 'aaa'},
'Phone2': {0: np.nan, 1: np.nan}})
print (df)
Address1 Address2 Address3 Address4 Phone1 Phone2 Phone3 Phone4
0 ABC NaN def NaN 9091-XYz NaN NaN XYZ-ABZ
1 ABC NaN def NaN Z9091-XYz NaN aaa XYZ-ABZ
#multiindex from columns of df
cols = df.columns.str.extract('([[A-Za-z]+)(\d+)', expand=True).values.tolist()
mux = pd.MultiIndex.from_tuples(cols)
df.columns = mux
print (df)
Address Phone
1 2 3 4 1 2 3 4
0 ABC NaN def NaN 9091-XYz NaN NaN XYZ-ABZ
1 ABC NaN def NaN Z9091-XYz NaN aaa XYZ-ABZ
#unstack, remove NaN rows, convert to df (because cumcount)
df1 = df.unstack().dropna().reset_index(level=1, drop=True).to_frame()
#create new level of index
df1['g'] = (df1.groupby(level=[0,1]).cumcount() + 1).astype(str)
#add column g to multiindex
df1.set_index('g', append=True, inplace=True)
#reshape to original
df1 = df1.unstack(level=[0,2])
#remove first level of multiindex of column (0 from to_frame)
df1.columns = df1.columns.droplevel(0)
#reindex and replace None to NaN
df1 = df1.reindex(columns=mux).replace({None: np.nan})
#'reset' multiindex in columns
df1.columns = [''.join(col) for col in df1.columns]
print (df1)
Address1 Address2 Address3 Address4 Phone1 Phone2 Phone3 Phone4
0 ABC def NaN NaN 9091-XYz XYZ-ABZ NaN NaN
1 ABC def NaN NaN Z9091-XYz aaa XYZ-ABZ NaN
旧解决方案:
我发现另一个问题 - 如果DataFrame
中有更多行,则上面的doest解决方案正常工作。所以你可以使用双apply
。但是这个解决方案的问题是行中值的顺序不正确:
df = pd.DataFrame({'Address1': {0: 'ABC', 1: 'ABC'}, 'Address2': {0: np.nan, 1: np.nan}, 'Address3': {0: 'def', 1: 'def'}, 'Phone4': {0: 'XYZ-ABZ', 1: 'XYZ-ABZ'}, 'Address4': {0: np.nan, 1: np.nan}, 'Phone1': {0: '9091-XYz', 1: '9091-XYz'}, 'Phone3': {0: np.nan, 1: 'aaa'}, 'Phone2': {0: np.nan, 1: np.nan}})
print (df)
Address1 Address2 Address3 Address4 Phone1 Phone2 Phone3 Phone4
0 ABC NaN def NaN 9091-XYz NaN NaN XYZ-ABZ
1 ABC NaN def NaN 9091-XYz NaN aaa XYZ-ABZ
cols = df.columns.str.extract('([[A-Za-z]+)(\d+)', expand=True).values.tolist()
mux = pd.MultiIndex.from_tuples(cols)
df.columns = mux
df = df.groupby(axis=1, level=0)
.apply(lambda x: x.apply(lambda y: y.sort_values().values, axis=1))
df.columns = [''.join(col) for col in df.columns]
print (df)
Address1 Address2 Address3 Address4 Phone1 Phone2 Phone3 Phone4
0 ABC def NaN NaN 9091-XYz XYZ-ABZ NaN NaN
1 ABC def NaN NaN 9091-XYz XYZ-ABZ aaa NaN
我也尝试修改piRSquared
解决方案 - 然后您不需要MultiIndex
:
coltype = df.columns.str.extract(r'([[A-Za-z]+)', expand=False)
print (coltype)
Index(['Address', 'Address', 'Address', 'Address', 'Phone', 'Phone', 'Phone',
'Phone'],
dtype='object')
df = df.groupby(coltype, axis=1)
.apply(lambda x: x.apply(lambda y: y.sort_values().values, axis=1))
print (df)
Address1 Address2 Address3 Address4 Phone1 Phone2 Phone3 Phone4
0 ABC def NaN NaN 9091-XYz XYZ-ABZ NaN NaN
1 ABC def NaN NaN 9091-XYz XYZ-ABZ aaa NaN