我正在尝试使用模拟数据的最大似然估计GARCH(1,1)模型。这就是我得到的:
library(fGarch)
set.seed(1)
garch11<-garchSpec(model = list())
x<-garchSim(garch11, n = 1000)
y <- t(x)
r <- y[1, ]
### Calculate Residuals
CalcResiduals <- function(theta, r)
{
n <- length(r)
omega<-theta[1]
alpha11<-theta[2]
beta11<-theta[3]
sigma.sqs <- vector(length = n)
sigma.sqs[1] <- 0.02
for (i in 1:(n-1)){
sigma.sqs[i+1] <- omega + alpha11*(r[i]^2) + beta11*sigma.sqs[i]
}
return(list(et=r, ht=sigma.sqs))
}
###Calculate the log-likelihood
GarchLogl <- function(theta, r){
res <- CalcResiduals(theta,r)
sigma.sqs <- res$ht
r <- res$et
return(-sum(dnorm(r[-1], mean = 0, sd = sqrt(sigma.sqs[-1]), log = TRUE)))
}
fit2 <- nlm(GarchLogl, # function call
p = rep(1,3), # initial values = 1 for all parameters
hessian = FALSE, # also return the hessian matrix
r = r , # data to be used
iterlim = 500) # maximum iteration
很遗憾,我收到以下错误消息但没有结果
有50个或更多警告(使用警告()查看前50个) 1:在sqrt(sigma.sqs [-1])中:生成NaNs
2:在nlm中(GarchLogl,p = rep(1,3),hessian = FALSE,数据&lt; -r,...: NA / Infdurchgrößte正面Zahl ersetzt
你知道我的代码有什么问题吗?非常感谢!