在此之前,我将输入图像转换为TFRecords文件。现在我有以下方法,我主要从教程中收集并修改了一点:
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image/encoded': tf.FixedLenFeature([], tf.string),
'image/class/label': tf.FixedLenFeature([], tf.int64),
})
image = tf.decode_raw(features['image/encoded'], tf.uint8)
label = tf.cast(features['image/class/label'], tf.int32)
reshaped_image = tf.reshape(image,[size[0], size[1], 3])
reshaped_image = tf.image.resize_images(reshaped_image, size[0], size[1], method = 0)
reshaped_image = tf.image.per_image_whitening(reshaped_image)
return reshaped_image, label
def inputs(train, batch_size, num_epochs):
filename = os.path.join(FLAGS.train_dir,
TRAIN_FILE if train else VALIDATION_FILE)
filename_queue = tf.train.string_input_producer(
[filename], num_epochs=num_epochs)
# Even when reading in multiple threads, share the filename
# queue.
image, label = read_and_decode(filename_queue)
# Shuffle the examples and collect them into batch_size batches.
# (Internally uses a RandomShuffleQueue.)
# We run this in two threads to avoid being a bottleneck.
images, sparse_labels = tf.train.shuffle_batch(
[image, label], batch_size=batch_size, num_threads=2,
capacity=1000 + 3 * batch_size,
# Ensures a minimum amount of shuffling of examples.
min_after_dequeue=1000)
return images, sparse_labels
但是当我尝试在iPython / Jupyter上调用批处理时,进程永远不会结束(似乎有一个循环)。我这样称呼它:
batch_x, batch_y = inputs(True, 100,1)
print batch_x.eval()
答案 0 :(得分:1)
看起来你错过了对tf.train.start_queue_runners()
的调用,它启动了驱动输入管道的后台线程(例如,其中一些是num_threads=2
在{{1}调用中隐含的线程并且tf.train.string_input_producer()
也需要后台线程)。以下小改动应取消阻止:
tf.train.shuffle_batch()