如何为每个matplotlib子图显示x轴标签

时间:2016-08-31 19:38:34

标签: python matplotlib histogram

我想在每个子图下面添加一个x轴标签。我使用此代码创建图表:

fig = plt.figure(figsize=(16,8))
ax1 = fig.add_subplot(1,3,1)
ax1.set_xlim([min(df1["Age"]),max(df1["Age"])])
ax1.set_xlabel("All Age Freq")
ax1 = df1["Age"].hist(color="cornflowerblue")

ax2 = fig.add_subplot(1,3,2)
ax2.set_xlim([min(df2["Age"]),max(df2["Age"])])
ax2.set_xlabel = "Survived by Age Freq"
ax2 = df2["Age"].hist(color="seagreen")

ax3 = fig.add_subplot(1,3,3)
ax3.set_xlim([min(df3["Age"]),max(df3["Age"])])
ax3.set_xlabel = "Not Survived by Age Freq"
ax3 = df3["Age"].hist(color="cadetblue")

plt.show()

这就是它的样子。只有第一个显示

enter image description here

如何在每个subplot下显示不同的x轴标签?

3 个答案:

答案 0 :(得分:3)

您使用ax.set_xlabel错误,这是功能(第一次通话是正确的,其他则不是):

fig = plt.figure(figsize=(16,8))
ax1 = fig.add_subplot(1,3,1)
ax1.set_xlim([min(df1["Age"]),max(df1["Age"])])
ax1.set_xlabel("All Age Freq")  # CORRECT USAGE
ax1 = df1["Age"].hist(color="cornflowerblue")

ax2 = fig.add_subplot(1,3,2)
ax2.set_xlim([min(df2["Age"]),max(df2["Age"])])
ax2.set_xlabel = "Survived by Age Freq"  # ERROR set_xlabel is a function
ax2 = df2["Age"].hist(color="seagreen")

ax3 = fig.add_subplot(1,3,3)
ax3.set_xlim([min(df3["Age"]),max(df3["Age"])])
ax3.set_xlabel = "Not Survived by Age Freq"  # ERROR set_xlabel is a function
ax3 = df3["Age"].hist(color="cadetblue")

plt.show()

答案 1 :(得分:0)

您可以使用以下方法在每个地块上方添加标题:

ax.set_title('your title')

答案 2 :(得分:0)

这很简单,只需使用matplotlib.axes.Axes.set_title,这里有一些代码示例:

from matplotlib import pyplot as plt
import pandas as pd

df1 = pd.DataFrame({
    "Age":[1,2,3,4]
})

df2 = pd.DataFrame({
    "Age":[10,20,30,40]
})

df3 = pd.DataFrame({
    "Age":[100,200,300,400]
})

fig = plt.figure(figsize=(16, 8))
ax1 = fig.add_subplot(1, 3, 1)
ax1.set_title("Title for df1")
ax1.set_xlim([min(df1["Age"]), max(df1["Age"])])
ax1.set_xlabel("All Age Freq")
ax1 = df1["Age"].hist(color="cornflowerblue")

ax2 = fig.add_subplot(1, 3, 2)
ax2.set_xlim([min(df2["Age"]), max(df2["Age"])])
ax2.set_title("Title for df2")
ax2.set_xlabel = "Survived by Age Freq"
ax2 = df2["Age"].hist(color="seagreen")

ax3 = fig.add_subplot(1, 3, 3)
ax3.set_xlim([min(df3["Age"]), max(df3["Age"])])
ax3.set_title("Title for df3")
ax3.set_xlabel = "Not Survived by Age Freq"
ax3 = df3["Age"].hist(color="cadetblue")

plt.show()