使用交叉验证评估Logistic回归

时间:2016-08-26 09:46:53

标签: python scikit-learn logistic-regression cross-validation

我想使用交叉验证来测试/训练我的数据集并评估逻辑回归模型在整个数据集上的性能,而不仅仅是在测试集上(例如25%)。

这些概念对我来说是全新的,如果做得对,我不太确定。如果有人能告诉我正确的步骤,我会在错误的地方采取行动,我将不胜感激。我的部分代码如下所示。

另外,我如何为" y2"绘制ROC?和" y3"与当前的图表在同一图表上?

谢谢

import pandas as pd 
Data=pd.read_csv ('C:\\Dataset.csv',index_col='SNo')
feature_cols=['A','B','C','D','E']
X=Data[feature_cols]

Y=Data['Status'] 
Y1=Data['Status1']  # predictions from elsewhere
Y2=Data['Status2'] # predictions from elsewhere

from sklearn.linear_model import LogisticRegression
logreg=LogisticRegression()
logreg.fit(X_train,y_train)

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

from sklearn import metrics, cross_validation
predicted = cross_validation.cross_val_predict(logreg, X, y, cv=10)
metrics.accuracy_score(y, predicted) 

from sklearn.cross_validation import cross_val_score
accuracy = cross_val_score(logreg, X, y, cv=10,scoring='accuracy')
print (accuracy)
print (cross_val_score(logreg, X, y, cv=10,scoring='accuracy').mean())

from nltk import ConfusionMatrix 
print (ConfusionMatrix(list(y), list(predicted)))
#print (ConfusionMatrix(list(y), list(yexpert)))

# sensitivity:
print (metrics.recall_score(y, predicted) )

import matplotlib.pyplot as plt 
probs = logreg.predict_proba(X)[:, 1] 
plt.hist(probs) 
plt.show()

# use 0.5 cutoff for predicting 'default' 
import numpy as np 
preds = np.where(probs > 0.5, 1, 0) 
print (ConfusionMatrix(list(y), list(preds)))

# check accuracy, sensitivity, specificity 
print (metrics.accuracy_score(y, predicted)) 

#ROC CURVES and AUC 
# plot ROC curve 
fpr, tpr, thresholds = metrics.roc_curve(y, probs) 
plt.plot(fpr, tpr) 
plt.xlim([0.0, 1.0]) 
plt.ylim([0.0, 1.0]) 
plt.xlabel('False Positive Rate') 
plt.ylabel('True Positive Rate)') 
plt.show()

# calculate AUC 
print (metrics.roc_auc_score(y, probs))

# use AUC as evaluation metric for cross-validation 
from sklearn.cross_validation import cross_val_score 
logreg = LogisticRegression() 
cross_val_score(logreg, X, y, cv=10, scoring='roc_auc').mean() 

1 个答案:

答案 0 :(得分:7)

你几乎是对的。 cross_validation.cross_val_predict为您提供整个数据集的预测。您只需要在代码中删除logreg.fit。具体来说,它的作用如下: 它将您的数据集划分为n个折叠,并在每次迭代中将其中一个折叠作为测试集并在其余折叠上训练模型(n-1折叠)。因此,最终您将获得整个数据的预测。

让我们用sklearn,iris中的一个内置数据集来说明这一点。该数据集包含150个具有4个特征的训练样本。 iris['data']Xiris['target']y

In [15]: iris['data'].shape
Out[15]: (150, 4)

要通过交叉验证对整个集合进行预测,您可以执行以下操作:

from sklearn.linear_model import LogisticRegression
from sklearn import metrics, cross_validation
from sklearn import datasets
iris = datasets.load_iris()
predicted = cross_validation.cross_val_predict(LogisticRegression(), iris['data'], iris['target'], cv=10)
print metrics.accuracy_score(iris['target'], predicted)

Out [1] : 0.9537

print metrics.classification_report(iris['target'], predicted) 

Out [2] :
                     precision    recall  f1-score   support

                0       1.00      1.00      1.00        50
                1       0.96      0.90      0.93        50
                2       0.91      0.96      0.93        50

      avg / total       0.95      0.95      0.95       150

所以,回到你的代码。所有你需要的是:

from sklearn import metrics, cross_validation
logreg=LogisticRegression()
predicted = cross_validation.cross_val_predict(logreg, X, y, cv=10)
print metrics.accuracy_score(y, predicted)
print metrics.classification_report(y, predicted) 

为了在多类别分类中绘制ROC,您可以按照this tutorial进行以下操作:

一般来说,sklearn有非常好的教程和文档。我强烈建议您阅读tutorial on cross_validation