使用一堆12维点(见下文),我正在尝试用SciPy生成一个ConvexHull。
这是可行的,但我得到的方法太多了,11022确切地说,许多方程都是精确的重复。
我可以使用NumPy删除重复项(这会将其减少到大约20(!)个等式),但由于我还想访问.neighbors
,我害怕搞砸索引。
知道为什么会这样吗?这是一个错误吗?
点数组:
[[ 1. 1. 1. 0. 1. 1. 1. 0. 1. 0. 0. 0.]
[ 1. 1. 0. 0. 1. 0. 0. 0. 1. 1. 1. 0.]
[ 1. 1. 1. 1. 1. 0. 0. 0. 0. 1. 0. 0.]
[ 1. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1.]
[ 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0.]
[ 1. 1. 0. 1. 1. 0. 0. 0. 0. 0. 1. 0.]
[ 1. 1. 1. 1. 0. 1. 1. 0. 0. 0. 0. 1.]
[ 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 1. 0. 1. 1. 0. 0. 1. 0. 0. 0.]
[ 1. 1. 0. 0. 0. 1. 0. 0. 1. 0. 1. 1.]
[ 1. 1. 0. 1. 0. 1. 1. 1. 0. 0. 1. 1.]
[ 1. 1. 1. 0. 0. 1. 1. 0. 1. 0. 0. 1.]
[ 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 0. 1.]
[ 1. 1. 0. 0. 1. 1. 1. 0. 1. 0. 1. 0.]
[ 1. 1. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0.]
[ 1. 1. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0.]
[ 1. 1. 0. 0. 0. 0. 1. 0. 1. 1. 1. 1.]
[ 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 0. 0.]
[ 1. 1. 0. 0. 1. 0. 1. 1. 1. 1. 1. 0.]
[ 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 0. 0. 0. 1. 1. 1. 1. 0. 1. 1.]
[ 1. 1. 0. 1. 0. 1. 0. 0. 0. 0. 1. 1.]
[ 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1.]
[ 1. 1. 1. 0. 0. 0. 1. 1. 1. 1. 0. 1.]
[ 1. 1. 0. 1. 0. 0. 1. 0. 0. 1. 1. 1.]
[ 1. 1. 0. 1. 1. 0. 0. 0. 0. 1. 1. 0.]
[ 1. 1. 1. 0. 1. 0. 1. 0. 1. 1. 0. 0.]
[ 1. 1. 0. 0. 1. 1. 1. 1. 1. 0. 1. 0.]
[ 1. 1. 1. 1. 1. 0. 1. 1. 0. 1. 0. 0.]
[ 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 0. 1. 1. 1. 0. 0. 0. 0. 1. 0.]
[ 1. 1. 1. 1. 1. 0. 1. 0. 0. 1. 0. 0.]
[ 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 0. 1.]
[ 1. 1. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[ 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
[ 1. 1. 0. 1. 1. 1. 1. 0. 0. 0. 1. 0.]
[ 1. 1. 0. 1. 0. 1. 1. 0. 0. 0. 1. 1.]
[ 1. 1. 1. 0. 1. 0. 1. 1. 1. 1. 0. 0.]
[ 1. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 0. 0. 1. 0. 0. 1. 0. 1.]
[ 1. 1. 1. 1. 0. 1. 0. 0. 0. 0. 0. 1.]
[ 1. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1.]
[ 1. 1. 0. 0. 1. 1. 0. 0. 1. 0. 1. 0.]
[ 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0.]
[ 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 0. 1. 0. 0. 0. 0. 0. 1. 1. 1.]
[ 1. 1. 0. 1. 1. 0. 1. 0. 0. 1. 1. 0.]
[ 1. 1. 0. 1. 1. 1. 1. 1. 0. 0. 1. 0.]
[ 1. 1. 0. 0. 1. 0. 1. 0. 1. 1. 1. 0.]
[ 1. 1. 1. 0. 0. 0. 1. 0. 1. 1. 0. 1.]
[ 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0.]
[ 1. 1. 1. 0. 1. 0. 0. 0. 1. 1. 0. 0.]
[ 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1.]
[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 1. 1. 0. 1. 1. 1. 0. 0. 0. 1.]
[ 1. 1. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1.]
[ 1. 1. 0. 0. 0. 1. 1. 0. 1. 0. 1. 1.]
[ 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 1. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0.]
[ 1. 1. 0. 1. 0. 0. 1. 1. 0. 1. 1. 1.]
[ 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 0. 1.]
[ 1. 1. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0.]
[ 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1.]]