我喜欢this RStudio blog post中描述的有关列规范的工作流程。基本上,可以在read_csv
导入后获取列规范,然后将其保存以供以后使用。例如,从那篇文章:
mtcars2 <- read_csv(readr_example("mtcars.csv"))
#> Parsed with column specification:
#> cols(
#> mpg = col_double(),
#> cyl = col_integer(),
#> disp = col_double(),
#> hp = col_integer(),
#> drat = col_double(),
#> wt = col_double(),
#> qsec = col_double(),
#> vs = col_integer(),
#> am = col_integer(),
#> gear = col_integer(),
#> carb = col_integer()
#> )
# Once you've figured out the correct types
mtcars_spec <- write_rds(spec(mtcars2), "mtcars2-spec.rds")
# Every subsequent load
mtcars2 <- read_csv(
readr_example("mtcars.csv"),
col_types = read_rds("mtcars2-spec.rds")
)
不幸的是,spec对象本身就是带有属性的列表,但这些列表与read_csv
函数通过col_types
参数提供的不同列规范不匹配
> mtcars_spec$cols$cyl
<collector_integer>
> str(mtcars_spec$cols$cyl)
list()
- attr(*, "class")= chr [1:2] "collector_integer" "collector"
> class(mtcars_spec)
[1] "col_spec"
此外,.rds文件在Windows中进行编辑很难看(至少对我而言)。
我希望能够编辑一个大的col_spec
对象(比如,跳过某些列,或以其他方式编辑该类)。我可以继续猜测我需要编辑列表的字符串,如下所示:
attr(mtcars_spec$cols$cyl,"class")[1] = "collector_skip"` # this worked!
> mtcars_spec
cols(
mpg = col_double(),
cyl = col_skip(),
disp = col_double(),
hp = col_integer(),
drat = col_double(),
wt = col_double(),
qsec = col_double(),
vs = col_integer(),
am = col_integer(),
gear = col_integer(),
carb = col_integer()
)
但这似乎很尴尬。是否有更优雅的方式来更新列分类,例如,在我的示例中,尝试跳过mtcars$cyl
列?或者,如果不是一种优雅的方式,那么涵盖所有可能类型的方式?我不想大肆猜测如何使用各种日期格式实现<collector_date>
。
答案 0 :(得分:1)
这是Jim Hester's Github post的最低版本
library(readr)
test_spec <- spec_csv('x,y,theDate,skipCol
1,a,"21/01/2018", "skip1
2,z,"31/01/2018", "skip2')
test_spec
#> cols(
#> x = col_integer(),
#> y = col_character(),
#> theDate = col_character(),
#> skipCol = col_character()
#> )
test_spec$cols[["theDate"]] <- col_date("%d/%m/%Y")
test_spec$cols[["skipCol"]] <- col_skip()
test_spec
#> cols(
#> x = col_integer(),
#> y = col_character(),
#> theDate = col_date(format = "%d/%m/%Y"),
#> skipCol = col_skip()
#> )
注释