在Windows上使用Python 2.7。想要使用功能T1
和T2
来设置逻辑回归模型以解决分类问题,目标是T3
。
我会显示T1
和T2
的值,以及我的代码。问题是,由于T1
的维度为5,T2
的维度为1,我们应该如何对其进行预处理,以便正确利用scikit-learn逻辑回归培训来充分利用它?
BTW,我的意思是训练样本1,T1
的特征是[ 0 -1 -2 -3]
,T2
的特征是[0]
,对于训练样本2,它的特征是T1为[ 1 0 -1 -2]
,T2
的功能为[1]
,...
import numpy as np
from sklearn import linear_model, datasets
arc = lambda r,c: r-c
T1 = np.array([[arc(r,c) for c in xrange(4)] for r in xrange(5)])
print T1
print type(T1)
T2 = np.array([[arc(r,c) for c in xrange(1)] for r in xrange(5)])
print T2
print type(T2)
T3 = np.array([0,0,1,1,1])
logreg = linear_model.LogisticRegression(C=1e5)
# we create an instance of Neighbours Classifier and fit the data.
# using T1 and T2 as features, and T3 as target
logreg.fit(T1+T2, T3)
T1,
[[ 0 -1 -2 -3]
[ 1 0 -1 -2]
[ 2 1 0 -1]
[ 3 2 1 0]
[ 4 3 2 1]]
T2,
[[0]
[1]
[2]
[3]
[4]]
答案 0 :(得分:1)
它需要使用numpy.concatenate连接特征数据矩阵。
import numpy as np
from sklearn import linear_model, datasets
arc = lambda r,c: r-c
T1 = np.array([[arc(r,c) for c in xrange(4)] for r in xrange(5)])
T2 = np.array([[arc(r,c) for c in xrange(1)] for r in xrange(5)])
T3 = np.array([0,0,1,1,1])
X = np.concatenate((T1,T2), axis=1)
Y = T3
logreg = linear_model.LogisticRegression(C=1e5)
# we create an instance of Neighbours Classifier and fit the data.
# using T1 and T2 as features, and T3 as target
logreg.fit(X, Y)
X_test = np.array([[1, 0, -1, -1, 1],
[0, 1, 2, 3, 4,]])
print logreg.predict(X_test)