Tensorflow多变量逻辑回归无法正常工作

时间:2016-08-24 03:20:14

标签: python machine-learning tensorflow logistic-regression

我正在尝试创建一个程序,使用Tensorflow将点分类为10。我试图在这个图的中心周围创建一个椭圆形,其中蓝点是:

椭圆形中的所有内容都应归类为1,其他内容应为0。在上图中,蓝点为1 s,红色x为0 s。

但是,每当我尝试对一个点进行分类时,它总是选择1,即使这是我训练过的一点,也就是0

我的问题很简单:为什么猜测总是1,我做错了什么或应该做些什么来解决这个问题?这是我在没有教程时尝试过的第一个机器学习问题,所以我真的不太了解这些东西。

感谢您给予的任何帮助,谢谢!

这是我的代码:

#!/usr/bin/env python3

import tensorflow as tf
import numpy
import matplotlib.pyplot as plt

training_in = numpy.array([[0, 0], [1, 1], [2, 0], [-2, 0], [-1, -1], [-1, 1], [-1.5, 1],   [3, 3], [3, 0], [-3, 0], [0, -3], [-1, 3], [1, -2], [-2, -1.5]])
training_out = numpy.array([1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])

def transform_data(x):
    return [x[0], x[1], x[0]**2, x[1]**2, x[0]*x[1]]

new_training_in = numpy.apply_along_axis(transform_data, 1, training_in)

feature_count = new_training_in.shape[1]

x = tf.placeholder(tf.float32, [None, feature_count])
y = tf.placeholder(tf.float32, [None, 1])

W = tf.Variable(tf.zeros([feature_count, 1]))
b = tf.Variable(tf.zeros([1]))

guess = tf.nn.softmax(tf.matmul(x, W) + b)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(tf.matmul(x, W) + b, y))

opti = tf.train.GradientDescentOptimizer(0.01).minimize(cost)

init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)

for i in range(1000):
    for (item_x, item_y) in zip(new_training_in, training_out):
        sess.run(opti, feed_dict={ x: [item_x], y: [[item_y]]})

print(sess.run(W))
print(sess.run(b))

plt.plot(training_in[:6, 0], training_in[:6, 1], 'bo')
plt.plot(training_in[6:, 0], training_in[6:, 1], 'rx')

results = sess.run(guess, feed_dict={ x: new_training_in })

for i in range(training_in.shape[0]):
    xx = [training_in[i:,0]]
    yy = [training_in[i:,1]]
    res = results[i]

    # this always prints `[ 1.]`
    print(res)

    # uncomment these lines to see the guesses
    # if res[0] == 0:
    #     plt.plot(xx, yy, 'c+')
    # else:
    #     plt.plot(xx, yy, 'g+')

plt.show()

1 个答案:

答案 0 :(得分:1)

使用softmax_cross_entropy_with_logits时会出现问题。在具体案例中,logitslabels都应具有[batch_size, number_of_labels=2]形状。

请注意,您的张量logits=tf.matmul(x, W) + blabels=y的形状为[batch_size, 1],因此Tensorflow假定为number_of_labels=1。这就是为什么你的猜测总是一样的。

A)您可以通过将training_out编码为单热矢量来解决此问题。我建议使用np.eye()来实现这一目标:

training_out = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
training_out = numpy.eye(2)[training_out]

然后,您需要进行以下更改:

y = tf.placeholder(tf.float32, [None, 2])
W = tf.Variable(tf.zeros([feature_count, 2]))
b = tf.Variable(tf.zeros([2]))
...
for i in range(1000):
    for (item_x, item_y) in zip(new_training_in, training_out):
        sess.run(opti, feed_dict={x: [item_x], y: [item_y]})
...
results = sess.run(guess, feed_dict={x: new_training_in})[:,1]

B)或者,您可以使用sparse_softmax_cross_entropy_with_logitslabels允许[batch_size]形状import tensorflow as tf import numpy import matplotlib.pyplot as plt training_in = numpy.array( [[0, 0], [1, 1], [2, 0], [-2, 0], [-1, -1], [-1, 1], [-1.5, 1], [3, 3], [3, 0], [-3, 0], [0, -3], [-1, 3], [1, -2], [-2, -1.5]]) training_out = numpy.array([1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]) def transform_data(x): return [x[0], x[1], x[0] ** 2, x[1] ** 2, x[0] * x[1]] new_training_in = numpy.apply_along_axis(transform_data, 1, training_in) feature_count = new_training_in.shape[1] x = tf.placeholder(tf.float32, [None, feature_count]) y = tf.placeholder(tf.int32, [None]) W = tf.Variable(tf.zeros([feature_count, 2])) b = tf.Variable(tf.zeros([2])) guess = tf.nn.softmax(tf.matmul(x, W) + b) cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(tf.matmul(x, W) + b, y)) opti = tf.train.GradientDescentOptimizer(0.01).minimize(cost) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for i in range(1000): for (item_x, item_y) in zip(new_training_in, training_out): sess.run(opti, feed_dict={x: [item_x], y: [item_y]}) print(sess.run(W)) print(sess.run(b)) plt.plot(training_in[:6, 0], training_in[:6, 1], 'bo') plt.plot(training_in[6:, 0], training_in[6:, 1], 'rx') results = sess.run(guess, feed_dict={x: new_training_in}) for i in range(training_in.shape[0]): xx = [training_in[i:, 0]] yy = [training_in[i:, 1]] res = results[i] # this always prints `[ 1.]` print(res) # uncomment these lines to see the guesses if res[0] == 0: plt.plot(xx, yy, 'c+') else: plt.plot(xx, yy, 'g+') plt.show() 。我已经调整了你的代码,使它以这种方式工作:

Graphics